What is the factor ring $R:=\mathbb{Z}_{6}[x]/\langle x^{2}\rangle$?
Since $\mathbb{Z}_{6}[x]/\langle x^{2}\rangle=\{a+bx+\langle x^{2}\rangle\,:\,a,b\in\mathbb{Z}_{6}\}$, i guess $R\cong\mathbb{Z}_{6}\times\mathbb{Z}_{6}$, but i'm not sure about it.
Q1) Is it possible to compute the following?: $$R\cong\mathbb{Z}_{2}[x]/\langle x^{2}\rangle\times\mathbb{Z}_{3}[x]\langle x^{2}\rangle\cong\left(\mathbb{Z}_{2}\times\mathbb{Z}_{2}\right)\times\left(\mathbb{Z}_{3}\times\mathbb{Z}_{3}\right)\cong\mathbb{Z}_{6}\times\mathbb{Z}_{6}.$$
Q2) If the above computation is true, I wonder what kind of theorem can guarantee that such computations are valid in general situation for example `on $\mathbb{Z}_{n}'$ where $n$ is composite.
Give some advice or comments. Thank you!
It is not true that $R \stackrel{\sim}{\to} \mathbb{Z}_6 \times \mathbb{Z}_6$. For example, in $R$, there is an element whose square is zero (namely $x$), but there are no elements in $\mathbb{Z}_6 \times \mathbb{Z}_6$ with this property.