$f(z) = \frac{(cos(z)-1)sin(z)}{e^{3z}z^4(z-\pi)^2}$
Approach
Singularities of denominator at $z=0$ of order $4$, $z=\pi$ of order $2$.
Singularities of numerator at $z=0$ of order $3$.
Gives overall singularities at $z=0$ of order $1$ and $z=\pi$ of order $2$.
$0$ is a simple pole and $\pi$ a Dual-pole(not sure on terminology)
I'm not 100% sure if these poles have been classified correctly and how to find their respective residues.
2026-02-22 20:10:07.1771791007
Find and classify singularities, calculate their residues
1.5k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in COMPLEX-ANALYSIS
- Minkowski functional of balanced domain with smooth boundary
- limit points at infinity
- conformal mapping and rational function
- orientation of circle in complex plane
- If $u+v = \frac{2 \sin 2x}{e^{2y}+e^{-2y}-2 \cos 2x}$ then find corresponding analytical function $f(z)=u+iv$
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- order of zero of modular form from it's expansion at infinity
- How to get to $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz =n_0-n_p$ from Cauchy's residue theorem?
- If $g(z)$ is analytic function, and $g(z)=O(|z|)$ and g(z) is never zero then show that g(z) is constant.
- Radius of convergence of Taylor series of a function of real variable
Related Questions in RESIDUE-CALCULUS
- How to get to $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz =n_0-n_p$ from Cauchy's residue theorem?
- contour integral involving the Gamma function
- The Cauchy transform of Marchenko-Pastur law
- Contour Integration with $\sec{(\sqrt{1-x^2})}$
- calculate $\int_{-\infty}^\infty\frac{e^{ix} \, dx}{x^3-3ix^2+2x+2i}$
- Integral $\int_{-\infty}^{\infty} \frac{ \exp\left( i a e^{u}\right) }{ e^{b \cosh(u)} - 1 } du$
- Compute the integral with use of complex analysis techniques
- $\int\limits_{-\infty}^\infty \frac{1}{e^{x^{2}}+1}dx$
- Residue Theorem: Inside vs. Outside
- Complex integral(s)of Hyperbolic functions for different contours
Related Questions in SINGULARITY-THEORY
- Describe the singularity of $\frac{xy}{x^2 + y^2}$ near $(x,y) = (0,0)$
- $(p,q)$-forms for analytical spaces?
- Intersection form of a Pseudomanifold
- Are isolated singularities always cone-like?
- Find and classify singularities, calculate their residues
- characterization of singularities of dynamic system
- complex function -singular points of function
- Small contractions as blow ups
- Local equation(s) for transversal (surface) singularities
- Sparse matrix computational difficulties
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
You've probably mixed up those notions. Your answer shows that you need to revise the definitions. Remember that isolated singularities are the isolated points on which your functions is not defined. The reason that the given function has singularities is because the denominator becomes $0$ at those points and thus $f$ can't be defined there. The enumerator is fine;
So $f$ has 2 isolated singularities: at point $0$, that is a pole of order $4$ and at point $\pi$, that is a pole of order $2$. To calculate the residues, remember the following formula (you may try to prove it inductively):
If $f:G\to\mathbb{C}$ has a pole of order $m$ at point $z_0$, then it is $$Res(f;z_0)=\lim_{z\to z_0}\bigg{(}\frac{(z-z_0)^mf(z)}{(m-1)!}\bigg{)}^{(m-1)}$$ where the $(m-1)$ up there denotes the $m-1$ order derivative.