I am meeting an interesting problem and solved two different method.
Could you see following 2 solution, and find errors?
QUESTION. $$ f(x)=2x^3 -2x^2 - \int_{0}^{x+1}f(t)dt $$
where $f(x)$ is symmetric about the point $(1,0)$
and differentiable at all point.
Find $$ \int_{2}^{4}f(x)dx $$ .
$$ $$
Sol.1
By the SYMMETRIC about $(1,0)$, we get $f(1)=0$ $ \ \ $$ $ $\cdots(a)$
From $ f(x)=2x^3 -2x^2 - \int_{0}^{x+1}f(t)dt $
$\Longrightarrow$ $f'(x)=6x^2 - 4x -f(x+1)$
$\Longrightarrow$ $f'(0)=-f(1)=0 $ $ \ \ $ (by (a).)
$ $
By the SYMMETRIC about $(1,0)$, $f'(0)=f'(2)$.
$\Longrightarrow$ $0=f'(0)=f'(2)=6 \cdot2^2 -4\cdot2-f(3)=24-8-f(3)=16-f(3) $
Thus $f(3)=16$.
$ $
From $ f(x)=2x^3 -2x^2 - \int_{0}^{x+1}f(t)dt $
$$\begin{align} & \Longrightarrow 16=f(3)=2\cdot 3^3-2\cdot3^2-\int_{0}^{4}f(t)dt =36-\int_{0}^{4}f(t)dt \\ & \Longrightarrow 20=\int_{0}^{4}f(t)dt\\ \end{align}$$
$$$$
$0=f(1)=2\cdot1^3-2\cdot1^2 - \int_{0}^{2}f(t)dt $
$ \Longrightarrow 0= \int_{0}^{2}f(t)dt $
$$$$
SO, $$ \int_{2}^{4}f(x)dx = \int_{0}^{4}f(x)dx -\int_{0}^{2}f(x)dx = 20-0=20 $$
$$$$$$$$
NOW, 2nd solution
$$$$ Sol.2
$ \int_{0}^{2}f(t)dt = 0 $.
$ f(-1)=-4$.
By the SYMMETRIC about $(1,0)$, $ \ $ $f(3)=-f(-1)$.
So,
$$\begin{align} & 4 = -f(-1)=f(3)=2\cdot3^3-2\cdot3^2-\int_{0}^{4}f(t)dt\\ & \Longrightarrow 32=\int_{0}^{4}f(t)dt\\ \end{align}$$
$$$$ Thus, $$ \int_{2}^{4}f(x)dx = \int_{0}^{4}f(x)dx -\int_{0}^{2}f(x)dx = 32-0=32 $$
$$$$ $$$$
Sol.1 and Sol.2 say different things.
What mistake led me this result?
$$$$
Thanks in advance. $$$$
$\color{red}{\text{----------- **EDIT** ----- **Please read below, thank you** ---------------------------------}}$
$$$$ P.S.1 $$$$ Let me 'darely' DEFINE symmetric about point $(a,b)$ $$$$
If $f$ is symmetric about point $(a,b)$
if and only if
$f(x)+f(2a-x)=2b$
if and only if
$f(a-x)+f(a+x)=2b$
$$$$
P.S.2 $$$$ By P.S.1
$f'(x)=f'(2-x)$
So, $f'(0)=f'(2)$
$$$$
Edit 2: Ok,first I apologize for what I wrote.. It seems that I understimated the problem.. Here is what I've done:
The simetry with respect to $(1,0)$ traduces in $$f(x+1)=-f(-x+1) $$(#). Just replacing in the equation that defines $f(x)$(call it equation (1)) we get $f(-1)=-4$. By the simmetry, $f(3)=4$, too. Replacing in (1), we get $\int_{0}^{4} f(t) dt =32$. Now, using that $f$ is differentiable in all of R, we can use the chain rule in (#), giving $$f'(x+1)=f'(-x+1)$$. Deriving (1), we get $$f'(x)=6x^2-4x-f(x+1)$$. Evaluating in $2$, we get $f'(2)=12=f'(0)=-f(1)=\int_{0}^{2} f(t) dt$.
Finally,$$\int_{2}^{4} f(t) dt=\int_{0}^{4} f(t) dt-\int_{0}^{2} f(t) dt=32-12=20$$.
Concerning your solutions: About the first, I don't know where do you get from that $f(1)=0$. In the second I don't get $\int_{0}^{2} f(t) dt=0$. I think you are asuming that $(1,0)$ belongs to the graph of $f$, but it's not necessary.