Find $\lim_{(x,y)\to(0,0)}\frac{x^3y^2}{x^4+y^4}$
I don't know how to approach it without using polar coordinates. Any hints?
Find $\lim_{(x,y)\to(0,0)}\frac{x^3y^2}{x^4+y^4}$
I don't know how to approach it without using polar coordinates. Any hints?
Hint: Use inequality for arithmetic and geometric mean, i.e. $x^4 + y^4 \geqslant 2 x^2 y^2 \geqslant x^2 y^2$.