Maximize $f(x_1,x_2, x_3) = x_{2}+x_{3} - (x_{2}^2+x_{3}^2)$ given $\sum_{i=1}^{3}x_{i} = 1$ and $x_{i}>0$ for $i=1,2,3$. I f I assume that $x_{i}\geq0$ for $i=1,2,3$ then the solution is $x_2 = x_3 = 1/2, x_1 = 0$. How to get the solution when we have strict inequlity $x_{i}>0$ for $i=1,2,3$ ?
2026-02-22 17:52:53.1771782773
optimization with strict inequality of variables
150 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MULTIVARIABLE-CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- $\iint_{S} F.\eta dA$ where $F = [3x^2 , y^2 , 0]$ and $S : r(u,v) = [u,v,2u+3v]$
- Proving the differentiability of the following function of two variables
- optimization with strict inequality of variables
- How to find the unit tangent vector of a curve in R^3
- Prove all tangent plane to the cone $x^2+y^2=z^2$ goes through the origin
- Holding intermediate variables constant in partial derivative chain rule
- Find the directional derivative in the point $p$ in the direction $\vec{pp'}$
- Check if $\phi$ is convex
- Gradient and Hessian of quadratic form
Related Questions in OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- optimization with strict inequality of variables
- Gradient of Cost Function To Find Matrix Factorization
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Building the model for a Linear Programming Problem
- Maximize the function
- Transform LMI problem into different SDP form
- Bouncing ball optimization
Related Questions in MAXIMA-MINIMA
- Minimum value of a complex expression involving cube root of a unity
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- Solving discrete recursion equations with min in the equation
- Trouble finding local extrema of a two variable function
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- Find the extreme points of the function $g(x):=(x^4-2x^2+2)^{1/2}, x∈[-0.5,2]$
- Maximizing triangle area problem
- Find the maximum volume of a cylinder
- A non-geometrical approach to this surds question
Related Questions in A-M-G-M-INEQUALITY
- optimization with strict inequality of variables
- Bound for difference between arithmetic and geometric mean
- Proving a small inequality
- What is the range of the function $f(x)=\frac{4x(x^2+1)}{x^2+(x^2+1)^2}$?
- In resticted domain , Applying the Cauchy-Schwarz's inequality
- for $x,y,z\ge 0$, $x+y+z=2$, prove $\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge\frac{18}{13}$
- Area of Triangle, Sine
- Find local extrema $f(x_1,x_2, \ldots , x_n) = \sqrt{(x_1+x_2+\ldots x_n-a)(a-x_1)(a-x_2)\cdots (a-x_n)}$
- Prove that $a+b+c\le \frac {a^3}{bc} + \frac {b^3}{ac} + \frac {c^3}{ab}$
- An algebraic inequality involving $\sum_{cyc} \frac1{(a+2b+3c)^2}$
Related Questions in CAUCHY-SCHWARZ-INEQUALITY
- Proving a small inequality
- Two Applications of Schwarz Inequality
- Prove $a^2+b^2+c^2\gt \frac {1}{2018}$ given $\left({3a + 28b + 35c}\right)\left({20a + 23b +33c}\right) = 1$
- Prove that $\frac{1}{\sqrt{ab+a+2}}+ \frac{1}{\sqrt{bc+b+2}}+ \frac{1}{\sqrt{ac+c+2}} \leq \frac{3}{2}$
- Prove that $a+b+c\le \frac {a^3}{bc} + \frac {b^3}{ac} + \frac {c^3}{ab}$
- Find the greatest and least values of $(\sin^{-1}x)^2+(\cos^{-1}x)^2$
- Inequality with $ab+bc+ca=3$
- Prove the next cyclic inequality
- How to prove this interesting inequality: $\frac{5x+3y+z}{5z+3y+x}+\frac{5y+3z+x}{5x+3z+y}+\frac{5z+3x+y}{5y+3x+z}\ge 3$?
- Norm squared inequality
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
By C-S and AM-GM $$x_2+x_3-(x_2^2+x_3^2)=x_2+x_3-\frac{1}{2}(1^2+1^2)(x_2^2+x_3^2)\leq x_2+x_3-\frac{(x_2+x_3)^2}{2}=$$ $$=\frac{1}{2}\cdot(x_2+x_3)(2-x_2-x_3)\leq\frac{1}{2}\left(\frac{x_2+x_3+2-x_2-x_3}{2}\right)^2=\frac{1}{2}.$$
The equality occurs for $x_2=x_3$ and when $x_2+x_3=2-x_2-x_3,$
which gives $x_2=x_3=\frac{1}{2}$ and $x_1=0.$
If $x_1>0$ then the maximum does not exist, but $\sup{f}=\frac{1}{2}.$