Finding $$\int\frac{x^2-1}{\sqrt{x^4+x^2+1}}$$ Try: I have tried it to convert it into $\displaystyle \left(x+\frac{1}{x}\right)=t$ and $\displaystyle \left(1-\frac{1}{x^2}\right)$ but nothing happen.
I felt that it must be in Elliptical Integral of first kind, second kind or in third kind.
Can someone explain me how to write in elliptical form
Elliptic integral of the first kind is $$E_1(\varphi, k) = \int\limits_0^\varphi \dfrac{d\theta}{\sqrt{1-k^2\sin^2\theta}} = \int\limits_0^{\sin\varphi}\dfrac{1}{\sqrt{(1-t^2)(1-k^2t^2)}}\,dt.$$
Elliptic integral of the second kind is $$E_2(\varphi, k) = \int\limits_0^\varphi \sqrt{1-k^2\sin^2\theta}\,d\theta = \int\limits_0^{\sin\varphi}\sqrt{\dfrac{1-k^2t^2}{1-t^2}}\,dt.$$
At first, $$1 + x^2 + x^4 = \left(1 + \dfrac12 x^2\right)^2 - \left(i\dfrac{\sqrt3}{2}\right)^2x^4$$ $$ = \left(1 + \left(\cos\dfrac{\pi}3 - i\sin\dfrac{\pi}3\right)x^2\right)\left(1 + \left(\cos\dfrac{\pi}3 + i\sin\dfrac{\pi}3\right)x^2\right)$$ $$ = \left(1 + e{\large{^{-\frac{\pi}3i}}}x^2\right)\left(1 + e{\large{^{\frac{2\pi}3i}}}e{\large{^{-\frac{\pi}3i}}}x^2\right) = \left(1 - e{\large{^{\frac{2\pi}3i}}}x^2\right)\left(1 - e{\large{^{\frac{2\pi}3i}}}e{\large{^{\frac{2\pi}3i}}}x^2\right)$$ $$ = \left(1 - \bigl(e{\large{^{\frac{\pi}3i}}}x\bigr)^2\right)\left(1 - \bigl(e{\large{^{\frac{\pi}3i}}}\bigr)^2\bigl(e{\large{^{\frac{\pi}3i}}}x\bigr)^2\right).$$
Let $$k = e{\large{^{\frac{\pi}3i}}},\quad t = kx,$$ then $$I = \int\dfrac{x^2 - 1}{\sqrt{x^4 + x^2 + 1}}dx = \frac1{k^3}\int\dfrac{t^2 - k^2}{\sqrt{(1-t^2)(1-k^2t^2)}}dt.$$
The ratio can be presented in the form of $$\dfrac{t^2 - k^2}{\sqrt{(1-t^2)(1-k^2t^2)}} = \dfrac{A}{\sqrt{(1-t^2)(1-k^2t^2)}} + B\,\sqrt{\dfrac{1-k^2t^2}{1-t^2}},$$ where $$t^2 - k^2 = A + B(1 - k^2t^2),\quad A + B = -k^2,\quad -k^2B = 1,$$ $$B = -\frac1{k^2},\quad A = \frac{1 - k^4}{k^2}.$$
Since $k^6 = 1,$ then $$I = \left(k - \dfrac1k\right)\int\dfrac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} - k\int\,\sqrt{\dfrac{1-k^2t^2}{1-t^2}}\,dt = {\left(k - \dfrac1k\right)E_1(\arcsin t, k) - kE_2(\arcsin t, k) + const},$$
$$\int\dfrac{x^2 - 1}{\sqrt{x^4 + x^2 + 1}}dx = \left(k - \dfrac1k\right)E_1\left(\arcsin \left(\frac{x}{k}\right), k\right) - kE_2\left(\arcsin\left(\frac{x}{k}\right), k\right) + const,\quad \text{ where } k = e^{\large{\frac\pi3i}}.$$
Differentiation shows the result is correct.