Prove: $$\mathcal{I}=\int_{0}^{1}\frac{x\mathbf{K}^2\left ( x \right )}{\sqrt{1-x^{2}}}\mathrm{d}x=\frac{\pi ^{4}}{16}\,_7F_6\left ( \dfrac{1}{2},\dfrac{1}{2},\dfrac{1}{2},\dfrac{1}{2},\dfrac{1}{2},\dfrac{1}{2},\dfrac{5}{4};\dfrac{1}{4},1,1,1,1,1;1 \right )$$
I found this beautiful integral in Yury A.Brychkov's book Handbook of Special Functions,Derivatives, Integrals, Series and Other Formulas p.278.
My attempt:
With the representation of elliptic integral by hypergeometric function below $$\mathbf{K}\left ( x \right )=\frac{\pi }{2}\, _2F_1\left ( \frac{1}{2},\frac{1}{2};1;x^{2} \right )=\frac{\pi }{2}\, _2F_1\left ( \frac{1}{4},\frac{1}{4};1;4x^{2}\left ( 1-x^{2} \right ) \right )$$ $$\mathbf{K}^{2}\left ( x \right )=\frac{\pi^{2} }{4}\, _3F_2\left ( \frac{1}{2},\frac{1}{2},\frac{1}{2};1,1;4x^{2}\left ( 1-x^{2} \right ) \right )$$ hence \begin{align*} \mathcal{I}&=\frac{\pi ^{2}}{4} \int_{0}^{1}\frac{x}{\sqrt{1-x^{2}}}\sum_{k=0}^{\infty }\frac{\Gamma^{3} \left ( k+\dfrac{1}{2} \right )\left [ 4x^{2}\left ( 1-x^{2} \right ) \right ]^{k}}{\Gamma^{3} \left ( \dfrac{1}{2} \right )\Gamma^{3} \left ( k+1 \right )}\mathrm{d}x\,\,\left ( x^{2}\rightarrow x \right )\\ &=\frac{\pi ^{2}}{8} \int_{0}^{1}\frac{1}{\sqrt{1-x}}\sum_{k=0}^{\infty }\frac{\Gamma^{3} \left ( k+\dfrac{1}{2} \right )\left [ 4x\left ( 1-x \right ) \right ]^{k}}{\Gamma^{3} \left ( \dfrac{1}{2} \right )\Gamma^{3} \left ( k+1 \right )}\mathrm{d}x\\ &=\frac{\pi ^{2}}{8}\sum_{k=0}^{\infty }\frac{\Gamma^{4} \left ( k+\dfrac{1}{2} \right )4^{k}}{\Gamma^{3} \left ( \dfrac{1}{2} \right )\Gamma^{2} \left ( k+1 \right )\Gamma \left ( 2k+\dfrac{3}{2} \right )}\\ &=\frac{\pi ^{2}}{8}\sum_{k=0}^{\infty }\frac{\Gamma^{4} \left ( k+\dfrac{1}{2} \right )4^{k}}{\Gamma^{2} \left ( \dfrac{1}{2} \right )\Gamma^{2} \left ( k+1 \right )\Gamma \left ( k+\dfrac{3}{4} \right )\Gamma \left ( k+\dfrac{5}{4} \right )2^{2k+\frac{1}{2}}}\\ &=\frac{\pi ^{2}}{8\sqrt{2}}\sum_{k=0}^{\infty }\frac{\Gamma^{4} \left ( k+\dfrac{1}{2} \right )}{\Gamma^{2} \left ( \dfrac{1}{2} \right )\Gamma^{2} \left ( k+1 \right )\Gamma \left ( k+\dfrac{3}{4} \right )\Gamma \left ( k+\dfrac{5}{4} \right )}\\ &=\frac{\pi ^{2}\Gamma ^{2}\left ( \dfrac{1}{2} \right )}{8\sqrt{2}\Gamma \left ( \dfrac{3}{4} \right )\Gamma \left ( \dfrac{5}{4} \right )}\, _4F_3\left ( \frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{4},\frac{5}{4};1 \right )\\ &=\frac{\pi ^{2}}{4}\, _4F_3\left ( \frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{4},\frac{5}{4};1 \right ) \end{align*}
But the numerical result doesn't match.Is there something wrong with my solution?
Any help will be appreciated!
Another solution (by Editor): The originial integral equals to $\int_0^1 K'(x)^2dx$. Now use that
$$\frac{4}{\pi^2}K'(x)_=\sum_{n=0}^\infty (-1)^n (4n+1) \left(\frac{\binom{2n}n}{4^n}\right)^3 P_{2n}(x)$$
and Parseval theorem of FL expansion. The result immediately follows.
This result and a sketch for its proof can be found in Moments of products of elliptic integrals by J.G. Wan. It uses a theorem by Zudilin which gives a triple integral representation for some very-well poised $\,_7F_6$ hypergeometric series : \begin{align} &\iiint_{\left[ 0,1\right]^3}\frac{x^{h_2-1}y^{h_3-1}z^{h_4-1}(1-x)^{h_0-h_2-h_3 }(1-y)^{h_0-h_3-h_4}(1-z)^{h_0-h_4-h_5}}{\left( 1-x\left( 1-y\left( 1-z \right) \right)\right)^{h_1}}\,dxdydz\\ &=\frac{\Gamma(h_0+1)\prod_{j=2}^4\Gamma(h_j)\prod_{j=1}^4\Gamma(h_0+1-h_j-h_{j+1})}{\prod_{j=1}^5\Gamma(h_0+1-h_j)}\times\\ &\times\,_7F_6\left( \left. \begin{matrix}h_0,1+h_0/2,h_1,h_2,h_3,h_4,h_5\\h_0/2,1+h_0-h_1,1+h_0-h_2,1+h_0-h_3,1+h_0-h_4,1+h_0-h_5\end{matrix}\right|1 \right) \end{align} To evaluate \begin{align} \mathcal{I}&=\int_{0}^{1}\frac{x\mathbf{K}^2\left ( x \right )}{\sqrt{1-x^{2}}}\mathrm{d}x\\ &=\int_{0}^{1}\mathbf{K'}^2\left ( y \right )\mathrm{d}y \end{align} where $\mathbf{K'}\left ( x \right )=\mathbf{K}\left ( \sqrt{1-x^2} \right )$ (note that the arguments of the elliptic integrals are the elliptical parameter - not the elliptic modulus), we use the two integral representations \begin{align} \mathbf{K}\left ( s\right )&=\int_0^1\frac{dt}{\sqrt{(1-t^2)(1-s^2t^2)}}\\ &=\frac{1}{2}\int_0^1\frac{dx}{\sqrt{x(1-x)(1-s^2x)}} \tag{A} \end{align} and also, from the latter, \begin{align} \mathbf{K'}\left ( a\right )&=\frac{1}{2}\int_0^1\frac{du}{\sqrt{u(1-u)(1-(1-a^2)u)}}\\ &=\frac{1}{2}\int_{a^2}^1\frac{dv}{\sqrt{v(1-v)(v-a^2)}}\tag{B} \end{align} obtained using the change of variable $v=1-(1-a^2)u$. Then, \begin{align} \mathcal{I}&\overset{\text{(B)}}{=}\frac{1}{2}\int_0^1da\mathbf{K}(\sqrt{1-a^2})\int_{a^2}^1\frac{dy}{\sqrt{y(1-y)(y-a^2)}}\\ &=\frac{1}{2}\int_0^1dy \int_0^{\sqrt{y}}\frac{\mathbf{K}(\sqrt{1-a^2})}{\sqrt{y(1-y)(y-a^2)}}\,da\\ &=\frac{1}{4}\int_0^1dy \int_0^1\frac{\mathbf{K}(\sqrt{1-yz})}{\sqrt{y(1-y)(1-z)}}\,dz\\ &\overset{\text{(A)}}{=}\frac{1}{8}\int_0^1dy \int_0^1\frac{dz}{\sqrt{y(1-y)(1-z)}}\int_0^1\frac{dx}{\sqrt{x(1-x)(1-x(1-yz))}}\\ &\overset{z\to 1-z}{=}\frac{1}{8}\iiint_{\left[ 0,1\right]^3}\frac{(xyz)^{-1/2}\left[ (1-x)(1-y)(1-z)\right]^{-1/2}}{\sqrt{1-x\left( 1-y\left( 1-z \right) \right)}}dxdydz \end{align} With $h_j=\frac{1}{2}$ for $j=0,1,2,3,4,5$, using the integral representation for the hypergeometric series given above \begin{align} \mathcal{I}&= \frac{1}{8}\Gamma\left(\frac{3}{2}\right)\left[\Gamma\left(\frac{1}{2} \right) \right]^7 \,_7F_6\left( \left. \begin{matrix}1/2,1/2,1/2,1/2,1/2,1/2,5/4\\1/4,1,1,1,1,1\end{matrix}\right|1 \right) \end{align} which is the expected result.