Find the inverse of $$A =\left[\begin{matrix}0 & 1 & 0 & 0\\ 0& 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ a & b & c & d\end{matrix}\right]$$
My attempts:
$$A^{-1} = \frac {\operatorname{adj}A}{\det A}$$
As I can find the $\det A$ that is $\det A = -b$. Here, how can I find the inverse? Is there any easy method/ or easy procedure to find the inverse of $A$?
I think that the formula that you mentioned is the best way for this matrix with lots of zeros. Note that you made a mistake: $\det A=-a$, not $-b$. And$$\operatorname{Adj}A=\begin{bmatrix}b & c & d & -1 \\ -a & 0 & 0 & 0 \\ 0 & -a & 0 & 0 \\ 0 & 0 & -a & 0\end{bmatrix}.$$Therefore$$A^{-1}=\begin{bmatrix}-\frac{b}{a} & -\frac{c}{a} & -\frac{d}{a} & \frac{1}{a} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{bmatrix}.$$