I am reading Q. Liu's "Algebraic geometry and arithmetic curves". In the proof of Lemma 4.3. at page 61 (the closed points of an open subset $U$ of an algebraic $k-$variety $X$ are closed in $X$), he says that $k(x)$ is a finite field extension of $k$, and he seems to use the fact that $k(x)$ is the quotient by a maximal ideal of a finitely generated $k-$algebra. If we write $k(x)=\mathcal{O}_{X,x} / \mathfrak{\tilde{m}}_x$, this does not seem to work, because at page 56 in Remark 3.48. he says that Spec $\mathcal{O}_{X,x}$ is in general not an algebraic variety, in particular not an affine variety, in particular $\mathcal{O}_{X,x}$ is in general not a finitely generated $k-$algebra. But we could also obtain $k(x)$ as $\mathcal{O}_{X}(U) / \mathfrak{m}_x$, since $U$ can be assumed to be an open affine subscheme of $X$. Still, I think it cannot be assumed to be an affine subvariety, so I cannot see why $\mathcal{O}_{X}(U)$ should be finitely generated as a $k-$algebra.
2026-02-22 19:10:18.1771787418
Finitely generated $k-$algebras of regular functions on an algebraic variety
259 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in SCHEMES
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- Do torsion-free $\mathcal{O}_X$-modules on curves have dimension one?
- $\mathbb{C}[x,y]$ is the sections of Spec $\mathbb{C}[x,y]$ minus the origin?
- Is every open affine subscheme of an algebraic $k-$variety an affine $k-$variety?
- Scheme Theoretic Image (Hartshorne Ex.II.3.11.d)
- Is this a closed embedding of schemes?
- Adjunction isomorphism in algebraic geometry
- Closed connected subset of $\mathbb{P}_k^1$
- Why can't closed subschemes be defined in an easier way?
- Projection from algebraic variety is surjective
Related Questions in ALGEBRAS
- Algebraic step including finite sum and binomial coefficient
- All maximal subfields of a Division Algebra are isomorphic.
- Finitely generated $k-$algebras of regular functions on an algebraic variety
- Special $k$-algebra is finitely generated
- Spectral radius inequality for non-abelian Banach algebras
- Question about R-algebra "generated by"
- Pushout in Commutative $\mathbb{Z}$-Alg
- Is multiplication in a normed algebra distributive?
- On the definition of free algebra and localization of a non-commutative ring
- How to get an isomorphic ideal from a given one?
Related Questions in AFFINE-VARIETIES
- Is every open affine subscheme of an algebraic $k-$variety an affine $k-$variety?
- Let $f(x, y) = y^2 - g(x) \in \mathbb{R}[x, y]$. Show that $(0, 0)$ is a singular point if and only if $g(x) = x^2(x-a)$.
- Show that the ideal $(XY+XZ+YZ,XYZ) = (X,Y)(Y,Z)(X,Z)$ and the irreducibility of the vanishing sets of the factors.
- The 1-affine space is not isomorphic to the 1-affine space minus one point
- Proving $\mathcal V(\mathcal I(A)) =A$ and $\mathcal I(\mathcal V(B))= \sqrt{B} $
- Connectedness and path connectedness, of irreducible affine algebraic set in $\mathbb C^n$, under usual Euclidean topology
- Is the complement of a complex affine algebraic set in an irreducible complex affine algebraic set (path) connected in the euclidean topology?
- Does an irreducible real affine algebraic set/ its complement has finitely many connected components in the Euclidean topology?
- On the radical of an ideal in the polynomial ring in 4 variables over complex field
- Describe the corresponding $k$-algebra homomorphism $\tilde{\varphi}:k[V]\to k[\mathbb{A}^1]$.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I am answering my own question with the solution given by danneks in the comments, so that I can mark it as closed. The point is that the localization of a finitely generated $k-$algebra at an element is again finitely generated. Hence the principal opens subsets, that form a basis of any affine variety, are again affine varieties. So pick an affine variety $V$ that contains $x$, consider the open subset $x \in U \cap V \subseteq V$ and choose a principal open subset $x \in D(f) \subseteq U \cap V \subseteq V$. Since $D(f) \subseteq U$, $x$ is closed in $D(f)$, so we can argue as we wanted.