Note that an affine $k-$variety is a scheme isomorphic to the spectrum of a finitely generated $k-$algebra. So I am just asking the following: if $U=\text{Spec} A$ is an affine open subset of an algebraic $k-$variety, and $A$ is a $k-$algebra, is it finitely generated?
2026-02-22 19:53:46.1771790026
Is every open affine subscheme of an algebraic $k-$variety an affine $k-$variety?
133 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in SCHEMES
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- Do torsion-free $\mathcal{O}_X$-modules on curves have dimension one?
- $\mathbb{C}[x,y]$ is the sections of Spec $\mathbb{C}[x,y]$ minus the origin?
- Finitely generated $k-$algebras of regular functions on an algebraic variety
- Is every open affine subscheme of an algebraic $k-$variety an affine $k-$variety?
- Scheme Theoretic Image (Hartshorne Ex.II.3.11.d)
- Is this a closed embedding of schemes?
- Closed connected subset of $\mathbb{P}_k^1$
- Why can't closed subschemes be defined in an easier way?
- Projection from algebraic variety is surjective
Related Questions in AFFINE-VARIETIES
- Finitely generated $k-$algebras of regular functions on an algebraic variety
- Is every open affine subscheme of an algebraic $k-$variety an affine $k-$variety?
- Let $f(x, y) = y^2 - g(x) \in \mathbb{R}[x, y]$. Show that $(0, 0)$ is a singular point if and only if $g(x) = x^2(x-a)$.
- Show that the ideal $(XY+XZ+YZ,XYZ) = (X,Y)(Y,Z)(X,Z)$ and the irreducibility of the vanishing sets of the factors.
- The 1-affine space is not isomorphic to the 1-affine space minus one point
- Proving $\mathcal V(\mathcal I(A)) =A$ and $\mathcal I(\mathcal V(B))= \sqrt{B} $
- Is the complement of a complex affine algebraic set in an irreducible complex affine algebraic set (path) connected in the euclidean topology?
- Does an irreducible real affine algebraic set/ its complement has finitely many connected components in the Euclidean topology?
- On the radical of an ideal in the polynomial ring in 4 variables over complex field
- Describe the corresponding $k$-algebra homomorphism $\tilde{\varphi}:k[V]\to k[\mathbb{A}^1]$.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
In general, if $f\colon X\to Y$ is a morphism (locally) of finite type, then for any open affine $\operatorname{Spec}(B)$ of $X$ mapping into an open affine $\operatorname{Spec}(A)$ of $Y$, the corresponding ring morphism $A\to B$ is of finite type.
Now, an algebraic $k$-variety is by definition a finite type $k$-scheme, i.e. the structure morphism $X\to \operatorname{Spec}(k)$ is of finite type. Now given $U=\operatorname{Spec}(A) \subset X$, it clearly maps into $\operatorname{Spec}(k)$ and hence the corresponding morphism $k\to A$ is of finite type, i.e. $A$ is a finitely generated $k$-algebra.