I am working with a supervisor on a topic about normal numbers, and a certain class of functions came up. It is the class for which $0 \le f(N) \le N-N^\theta$ for all $0<\theta<1$. He said that there are many such functions, but I can't understand how there can be other than the zero function. I was wondering if anyone can help explain how there can be a function that fits this and what it might be? Any help is appreciated!
2026-02-22 21:29:40.1771795780
Functions less that $N-N^\theta$ for all $\theta<1$
35 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in FUNCTIONS
- Functions - confusion regarding properties, as per example in wiki
- Composition of functions - properties
- Finding Range from Domain
- Why is surjectivity defined using $\exists$ rather than $\exists !$
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Lower bound of bounded functions.
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
Related Questions in FUNCTIONAL-INEQUALITIES
- Ideas to prove an inequality
- Separation of variables and inequality
- Find $g(2002)$ given $f(1)$ and two inequalities
- Schwartz inequality for $|\int_{0}^\infty \frac{x^{3/2}}{1+ix}e^{-x} dx|$
- Functions less that $N-N^\theta$ for all $\theta<1$
- Find all the functions such that $ g ( x ^ m y ^ n ) \le g ( x ) ^ { \frac { a ^ 2 } m } g ( y ) ^ { \frac { b ^ 2 } n } $
- Prove $\int_{0}^1 f(x^2)\,\mathrm{d}x \le f\left(\frac{1}{3}\right)$ an unspecified $f$
- $L^2$ convergence and pointwise-norm
- Russian MO 2004 $\sqrt{a} + \sqrt{b} + \sqrt{c} \geq ab + bc + ca$
- Function with Weird Property!
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The problem is when $\theta$ is close to $1$, so let $\theta = 1-c$ where $c$ is small.
$N-N^{\theta} =N-N^{1-c} =N(1-N^{-c}) =N(1-\dfrac1{N^c}) \gt N(1-\dfrac1{\ln N}) $ since $\ln N < N^c$ for any $c > 0$ for all large enough $N$.
Therefore one possibility is $N-N/\ln N$.