Given a function $f: \mathbf{N}_0 \to \mathbf{N}_0$, defined $$ f(x) = \begin{cases} x+3 & \text{if } x \in \mathbf{N}_{\text{even}} \\ x-1 & \text{if } x \in \mathbf{N}_{\text{odd}} \end{cases} $$
How can I find the image $f( $$\mathbf{N}_{\text{even}}$ )?
Note: Every even number $n$ can be written as
$n=2k, k=0,1,2 ......$.
Hence:
$f(2k) = 2k+3, k=0,1,2,.....$.
Finally:
$f(\mathbb{N_{even}}) = $
{$2k+3| k \in \mathbb{N}$} $= ${$3,5,7,........$}.