I understand how gamma matrices generate a Clifford algebra that corresponds to the Minkowski metric. So the next step for me is to understand how gamma matrices are used in the context of special relativity. I've been Googling but all I get is stuff about quantum mechanics. The quantum mechanics stuff is going to have to wait. Any suggestions for what I should read or what I should google?
2026-02-22 17:42:07.1771782127
Gamma matrices and special relativity
68 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CLIFFORD-ALGEBRAS
- What is the Clifford/geometric product in terms of the inner and exterior product
- A confusing formula in Clifford algebra
- Clifford product of force and distance
- Minkowski metric. Scalar or tensor?
- For two unit non-oriented bivectors $A,B\in \mathbb{R}P^2\subset \Lambda^2\mathbb{R}^3$ is the mapping $\phi:(A,B)\rightarrow AB$ bijective?
- Gamma matrices and special relativity
- Spinor chiral transformation by $\psi \to \gamma^5 \psi$
- Geometric Calculus, Clifford Algebra, and Calculus of Variations
- "Square root" of a decomposition of a homogeneous polynomial to harmonic and $x^2 q$.
- Orthogonality of Clifford algebra's Fueter polynomial in certain measure
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The gamma matrices were first introduced by Dirac to explain the quantum behaviour of electrons, so I think it is natural that most Google searches return quantum mechanics results. I am a physicist by training, so take my recommendation with a pinch of salt.
I like Geometric Algebra for Physicists by Chris Doran and Anthony Lasenby. Chapter 5 (Relativity and spacetime) is dedicated to the Clifford algebra of spacetime and is a pretty much self-contained introduction to relativity in this context. The book also covers quantum theory if you are interested later.