For two non-oriented unit bivectors $A,B\in \mathbb{R}P^2\subset \Lambda^2\mathbb{R}^3$ is the mapping $\phi:\mathbb{R}P^2\times \mathbb{R}P^2/\mathbf{D} \rightarrow S^3$, where $\mathbf{D}$ is the diagonal $\{(x,x):x\in \mathbb{R}P^2\}$, of the form $\phi:(A,B)\rightarrow AB$ bijective? That is, is the mapping from two non-oriented ($A\sim -A,B\sim -B$) unit bivectors to their geometric product bijective, as long as the two bivectors are not the same? Intuitively this makes sense, but I'm having a hard time justifying it algebraically.
2026-02-22 17:43:22.1771782202
For two unit non-oriented bivectors $A,B\in \mathbb{R}P^2\subset \Lambda^2\mathbb{R}^3$ is the mapping $\phi:(A,B)\rightarrow AB$ bijective?
51 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GEOMETRY
- Point in, on or out of a circle
- Find all the triangles $ABC$ for which the perpendicular line to AB halves a line segment
- How to see line bundle on $\mathbb P^1$ intuitively?
- An underdetermined system derived for rotated coordinate system
- Asymptotes of hyperbola
- Finding the range of product of two distances.
- Constrain coordinates of a point into a circle
- Position of point with respect to hyperbola
- Length of Shadow from a lamp?
- Show that the asymptotes of an hyperbola are its tangents at infinity points
Related Questions in FUNCTIONS
- Functions - confusion regarding properties, as per example in wiki
- Composition of functions - properties
- Finding Range from Domain
- Why is surjectivity defined using $\exists$ rather than $\exists !$
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Lower bound of bounded functions.
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
Related Questions in PROOF-WRITING
- how is my proof on equinumerous sets
- Do these special substring sets form a matroid?
- How do I prove this question involving primes?
- Total number of nodes in a full k-ary tree. Explanation
- Prove all limit points of $[a,b]$ are in $[a,b]$
- $\inf A = -\sup (-A)$
- Prove that $\sup(cA)=c\sup(A)$.
- Supremum of Sumset (Proof Writing)
- Fibonacci Numbers Proof by Induction (Looking for Feedback)
- Is my method correct for to prove $a^{\log_b c} = c^{\log_b a}$?
Related Questions in CLIFFORD-ALGEBRAS
- What is the Clifford/geometric product in terms of the inner and exterior product
- A confusing formula in Clifford algebra
- Clifford product of force and distance
- Minkowski metric. Scalar or tensor?
- For two unit non-oriented bivectors $A,B\in \mathbb{R}P^2\subset \Lambda^2\mathbb{R}^3$ is the mapping $\phi:(A,B)\rightarrow AB$ bijective?
- Gamma matrices and special relativity
- Spinor chiral transformation by $\psi \to \gamma^5 \psi$
- Geometric Calculus, Clifford Algebra, and Calculus of Variations
- "Square root" of a decomposition of a homogeneous polynomial to harmonic and $x^2 q$.
- Orthogonality of Clifford algebra's Fueter polynomial in certain measure
Related Questions in GEOMETRIC-ALGEBRAS
- A new type of curvature multivector for surfaces?
- Conditions for a C*-algebra to be Abelian
- A confusing formula in Clifford algebra
- What is exponential of a blade?
- For two unit non-oriented bivectors $A,B\in \mathbb{R}P^2\subset \Lambda^2\mathbb{R}^3$ is the mapping $\phi:(A,B)\rightarrow AB$ bijective?
- Geometric Calculus, Clifford Algebra, and Calculus of Variations
- Householder reflection in geometric algebra is not working for me
- How to decompose a bivector into a sum of _orthogonal_ blades?
- The Fundamental Theorem of Geometric Calculus in a lorentzian manifold
- Transformation of metric tensor in clifford algebra for nonorthogonal transformations
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
HINT:
An equivalent question is: what are the fibers of the map $$\mathbb{R}^3\times \mathbb{R}^3\to\mathbb{R}^3, (v,w)\mapsto v\times w$$