Theorem. Let $a,b,c$ be three non-negative real numbers. Then $$a^6+b^6+c^6\geq 3a^2b^2c^2+\frac12 (a-b)^2 (b-c)^2 (c-a)^2.$$
Remark. This Theorem is a generalization of the AM-GM inequality for three variables, which states $$a^6+b^6+c^6\geq3a^2b^2c^2.$$
I have found a proof of this Theorem (see my answer below), however, it is probably not the most elegant. More elegant proofs are welcome.
Note that \begin{eqnarray*} 2(a^6+b^6+c^6-3a^2b^2c^2)=(a^2+b^2+c^2)((a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2) \end{eqnarray*} Now use the Cauchy-Schwarz inequality for sums: \begin{eqnarray*} (a^2+b^2+c^2)((b^2-c^2)^2+(c^2-a^2)^2+(a^2-b^2)^2) \geq (a(b^2-c^2) +b(c^2-a^2)+c(a^2-b^2))^2. \end{eqnarray*}
Since the right-hand side equals $$(a-b)^2(b-c)^2(c-a)^2,$$ we are done.