Let $a,b,c>0,a+b+c=1$, show that $$\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}+\sqrt{\dfrac{ab}{c+ab}} \geq 1$$
I tried $$\dfrac{bc}{a+bc}=\dfrac{bc}{a(a+b+c)+bc}=\dfrac{bc}{(a+b)(a+c)}$$ It suffice to show that $$\sqrt{\dfrac{bc}{(a+b)(a+c)}}+\sqrt{\dfrac{ca}{(b+a)(b+c)}}+\sqrt{\dfrac{ab}{(c+a)(c+b)}}\geq 1$$
Let $a=\frac{1}{x}$, $b=\frac{1}{y}$ and $c=\frac{1}{z}$. Hence, we need to prove that$\sum\limits_{cyc}\frac{x}{\sqrt{(x+y)(x+z)}}\geq1$.
By AM-GM and C-S $\sum\limits_{cyc}\frac{x}{\sqrt{(x+y)(x+z)}}\geq\sum\limits_{cyc}\frac{2x}{2x+y+z}\geq\frac{2(x+y+z)^2}{\sum\limits_{cyc}(2x^2+2xy)}\geq1$