Let $a,b,$ and $c$ be positive real numbers with $ab+bc+ca = 1$. Prove that $$\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}} \leq \dfrac{3}{2}$$
Attempt
The $ab+bc+ca = 1$ condition reminds of the rearrangement inequality. Thus, I would say that $a^2+b^2+c^2 \geq ab+bc+ca = 1$ then rewrite the given inequality as $4(a+b+c)^2 = 4(a^2+b^2+c^2) + 8(ab+bc+ca) = 4(a^2+b^2+c^2) \leq 9(a^2+1)(b^2+1)(c^2+1)$
I don't know what to do next.
By AM-GM $\sum\limits_{cyc}\frac{a}{\sqrt{a^2+1}}=\sum\limits_{cyc}\frac{a}{\sqrt{(a+b)(a+c)}}\leq\frac{1}{2}\sum\limits_{cyc}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3}{2}$.