Graph. Area- Inhalt. Translation

62 Views Asked by At

enter image description hereLet $f$ be a function. $$f_a(x)=(x-a)e^{a+2-x}.$$

I have something in German which I'm not very sure if I have understand very well.

Bestimmen Sie durch partiell Integration eine Gleichung einer Stammfunktion von $f_a$!

Die x-Achse und der Graph der Funktion $f_2$" begrenzen im I. Ouandranten eine nach rechts ins Unendliche reichende Flache. Berechnen Sie deren Inhalt!

Can you help me with some translations and mathematic suggestion!

How can I calculate the area?

2

There are 2 best solutions below

2
On BEST ANSWER

"Bestimmen Sie durch partielle Integration eine Gleichung einer Stammfunktion von $f_a$!"

Use integration by parts to determine an equation for a primitive function (antiderivative) of $f_a$.

Better: Find a primitive of $f_a$ by integration by parts.

"Die $x$-Achse und der Graph der Funktion $f_2$" begrenzen im I. Ouandranten eine nach rechts ins Unendliche reichende Fläche. Berechnen Sie deren Inhalt!

The $x$-axis and the graph of the function $f_2$ bound in the first quadrant a region extending to infinity rightward. Compute its area.

So that's $$\int_0^\infty \lvert f_2(x)\rvert\,dx,$$

the absolute value ensures we only treat the part in the first quadrant.

0
On

Translations: Determine, by integration by parts, the equation for an indefinite integral of $f_a$. The $x$-axis and the graph of the function $f_2$ bound a region in the first quadrant that extends to infinity on the right. Compute its area.