Let $f$ be a function. $$f_a(x)=(x-a)e^{a+2-x}.$$
I have something in German which I'm not very sure if I have understand very well.
Bestimmen Sie durch partiell Integration eine Gleichung einer Stammfunktion von $f_a$!
Die x-Achse und der Graph der Funktion $f_2$" begrenzen im I. Ouandranten eine nach rechts ins Unendliche reichende Flache. Berechnen Sie deren Inhalt!
Can you help me with some translations and mathematic suggestion!
How can I calculate the area?
Use integration by parts to determine an equation for a primitive function (antiderivative) of $f_a$.
Better: Find a primitive of $f_a$ by integration by parts.
The $x$-axis and the graph of the function $f_2$ bound in the first quadrant a region extending to infinity rightward. Compute its area.
So that's $$\int_0^\infty \lvert f_2(x)\rvert\,dx,$$
the absolute value ensures we only treat the part in the first quadrant.