Here is the equation:
$$\sin^5(x) = \frac {\cos(x)}4$$
The answers should be between: 0° and 360°
I really tried and I dont even think it is possible to solve algebraically, maybe using numerical methods or other kind of black magic but that is very advanced for my grade. I am in high school.
\begin{align} \sin^5x &= \frac{\cos x}4 ,\\ (\sin^5x)^2 &= \left(\frac{\cos x}4\right)^2 ,\\ \sin^{10}x &= \tfrac1{16}{\cos^2 x} ,\\ (\sin^{2}x)^5 &= \tfrac1{16}(1-\sin^2 x) , \end{align}
\begin{align} 16(\sin^{2}x)^5+\sin^2 x-1&=0 ,\\ (2\sin^2x-1) (8\sin^8x+4\sin^6x+2\sin^4x+\sin^2x+1) &=0 ,\\ \cos2x\,(8\sin^8x+4\sin^6x+2\sin^4x+\sin^2x+1) &=0. \end{align}
\begin{align} 8\sin^8x+4\sin^6x+2\sin^4x+\sin^2x+1&>0\quad \forall x\in\mathbb{R} , \end{align}
\begin{align} \cos2x&=0 ,\\ 2x&=\tfrac\pi2+\pi k,\quad k=0,1,\dots ,\\ x&=\tfrac\pi4+\tfrac{\pi k}2,\quad k=0,1,\dots . \end{align}
For $x$ restricted to the interval $[0,2\pi]$, we have four solutions \begin{align} x_1&=\tfrac\pi4=45^\circ ,\\ x_2&=\tfrac\pi4+\tfrac\pi2=\tfrac{3\pi}4=135^\circ .\\ x_3&=\tfrac\pi4+\pi=\tfrac{5\pi}4=225^\circ .\\ x_4&=\tfrac\pi4+\tfrac{3\pi}2=\tfrac{7\pi}4=315^\circ .\\ \end{align}
Substitution of $x_1,\dots,x_4$ into original equation shows that only solutions $x_1,x_3$ are valid:
\begin{align} \sin^5x_1 &=\tfrac{\sqrt2}8 ,\\ \frac{\cos x_1}4&=\tfrac{\sqrt2}8 ,\\ \sin^5x_2 &=\tfrac{\sqrt2}8 ,\\ \frac{\cos x_2}4&=-\tfrac{\sqrt2}8 ,\\ \sin^5x_3 &=-\tfrac{\sqrt2}8 ,\\ \frac{\cos x_3}4&=-\tfrac{\sqrt2}8 ,\\ \sin^5x_4 &=-\tfrac{\sqrt2}8 ,\\ \frac{\cos x_4}4&=\tfrac{\sqrt2}8 . \end{align}
As @Malcolm noted, two extra solutions were introduced by the squaring the original equation, that's why the final check of the found roots is essential.