I have tried to determine $\int \ x\sqrt{1-x^2}\,dx$ using trigonometric
formula by the substition $x=\cos t$ I have got :
$$-\int \cos t \sin^2 t\,dt\tag{1}$$ for $\sin t > 0$ and $$ \int \cos t \sin^2 t\,dt\tag{2}$$ for $\sin t <0 $.
But both $(1)$ and $(2)$ have no standard mathematical function , then how do i can determine the titled integral using this method ?
You can assume $t\in[0,\pi]$.
Thus, $$\sqrt{1-x^2}=|\sin{x}|=\sin{x}.$$