In my opinion, the notion of ordinals plays a key role in ZF set theory. A lot of important notions are defined by recursive on ordinals, like von Neumann hierarchy, Gödel's constructible universe. This makes me think that a set theory without the full force of ordinals will not be very useful. However, I also notice that in developing properties of ordinals the use of the law of excluded middle is crucial. Since Intuitionistic Logic reject the rule of excluded middle, I'm a bit curious that how do those set theories that are based on Intuitionistic Logic deal with ordinals?
2026-02-22 18:14:53.1771784093
How do set theories base on Intuitionistic Logic deal with ordinals?
285 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LOGIC
- Theorems in MK would imply theorems in ZFC
- What is (mathematically) minimal computer architecture to run any software
- What formula proved in MK or Godel Incompleteness theorem
- Determine the truth value and validity of the propositions given
- Is this a commonly known paradox?
- Help with Propositional Logic Proof
- Symbol for assignment of a truth-value?
- Find the truth value of... empty set?
- Do I need the axiom of choice to prove this statement?
- Prove that any truth function $f$ can be represented by a formula $φ$ in cnf by negating a formula in dnf
Related Questions in SET-THEORY
- Theorems in MK would imply theorems in ZFC
- What formula proved in MK or Godel Incompleteness theorem
- Proving the schema of separation from replacement
- Understanding the Axiom of Replacement
- Minimal model over forcing iteration
- How can I prove that the collection of all (class-)function from a proper class A to a class B is empty?
- max of limit cardinals smaller than a successor cardinal bigger than $\aleph_\omega$
- Canonical choice of many elements not contained in a set
- Non-standard axioms + ZF and rest of math
- If $\kappa$ is a regular cardinal then $\kappa^{<\kappa} = \max\{\kappa, 2^{<\kappa}\}$
Related Questions in CONSTRUCTIVE-MATHEMATICS
- How do set theories base on Intuitionistic Logic deal with ordinals?
- Constructive Proof- How to Start?
- Does Diaconescu's theorem imply cubical type theory is non-constructive?
- Constructive proof of existence of maximal ideal
- Is there a theorem that can easily be proved to be non intuitionistic?
- What kinds of variables range over proofs?
- Construct a real $x$ such that ZF does not prove whether $x\in\mathbb{Q}$
- Infinitesimal Approaches To Differential Geometry As Conservative Extension
- Confusion around quantifiers in intuitionistic logic
- Constructive proof of a classical result
Related Questions in INTUITIONISTIC-LOGIC
- Are Proofs of Dependent Pair Types Equivalent to Finding an Inverse Function?
- Prove the undecidability of a formula
- Semantics for minimal logic
- Is minimal logic equivalent to intuitionistic?
- How do set theories base on Intuitionistic Logic deal with ordinals?
- Attempt at constructive proof of compactness of [0,1], does this use LEM? Does a constructive proof exist?
- Is there a theorem that can easily be proved to be non intuitionistic?
- Interpretation of implication in intuitionistic logic
- $\mathbb Q$ topological semantics for intuitionistic propositional logic
- A confusion about Church's simple theory of types and the Curry-Howard isomorphism
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
In constructive set theory the most fruitful definition of ordinal is "a transitive set $x$ such that for all $y \in x$, y is also transitive." Note that in $\mathbf{ZF}$ this agrees with the usual definition. It's important to note that in intuitionistic set theory one still has $\in$-induction and can use it to define operations by recursion on ordinals.
Often in $\mathbf{ZF}$ definitions by recursion on ordinals are defined by splitting into two cases depending on whether an ordinal is a successor or a limit. However, this is often unnecessary and both cases can be combined into one. For example, in classical logic, one defines addition $\alpha + \beta$ by $\alpha + (\beta + 1) := (\alpha + \beta) + 1$ for successor and $\alpha + \lambda := \bigcup_{\beta < \lambda} (\alpha + \lambda)$ for limit. But you can also define $\alpha + \beta$ by $\alpha + \beta := \bigcup_{\gamma \in \beta} ((\alpha + \gamma) + 1)$. This works in intuitionistic logic and is equivalent to the usual definition in $\mathbf{ZF}$.
Alternatively, it is possible to use inductive definitions in place of ordinals for many proofs.
See Aczel and Rathjen, Constructive Set Theory. Ordinals are in section 9.4 and inductive definitions are in chapter 12.