I am trying to solve some ratio tests. I came across to my notes and i can't figure out how is that equation simplified. Well, how is $\frac{\left(2\left(n+1\right)\right)!}{\left(n+1\right)!}\cdot \frac{n!}{\left(2n\right)!}$ simplified to $\frac{\left(2n+1\right)\left(2n+2\right)}{n+1}$
2026-02-22 17:00:14.1771779614
On
On
How is $\frac{\left(2\left(n+1\right)\right)!}{\left(n+1\right)!}\cdot \frac{n!}{\left(2n\right)!}$ simplified like that?
1.6k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
5
There are 5 best solutions below
0
On
Note that: $$(2(n+1))!=(2n+2)!$$ $$=(2n)!\times (2n+1)\times (2n+2)$$ giving us: $$\frac{(2(n+1))!}{(2n)!}\times \frac{n!} {(n+1)!} $$ $$= \frac{(2n)!\times (2n+1) \times (2n+2)}{(2n)!}\times \frac{n!} {n! \times (n+1)}$$ $$=\,? $$
0
On
$[1]:\frac{(2(n+1))!}{(2n)!}$=$\frac{(2n+2)!}{(2n)!}$=$\frac{(2n+2)(2n+1)(2n)!}{(2n)!}=(2n+2)(2n+1)=2(n+1)(2n+1)$
$[2]:\frac{(n)!}{(n+1)!}=\frac{(n)!}{(n+1)(n)!}=\frac{1}{n+1}$
Multiply 1 by 2:
$\frac{(2(n+1))!}{(2n)!}.\frac{(n)!}{(n+1)!}=\frac{(2n+2)(2n+1)}{n+1}=2(n+1)(2n+1)(\frac{1}{n+1})=4n+2$
\begin{align} \frac{\left(2\left(n+1\right)\right)!}{\left(n+1\right)!}\cdot \frac{n!}{\left(2n\right)!} &= \left[ \frac{\left(2\left(n+1\right)\right)!}{\left(2n\right)!} \right]\cdot \frac{n!}{\left(n+1\right)!} \\ &= \frac{(2n)! (2n+2)(2n+1)}{(2n)!} \frac{n!}{n! (n+1)}\\ &= \frac{(2n+1)(2n+2)}{n+1} \end{align}