What is the limit of the sequence given by $x_n=\dfrac{(3n)!}{(n!)^3}$
We have to evaluate $\displaystyle \lim_{n \to \infty} x_n$
I think the limit will tend to infinity because the numerator is $n!(n+1)....(n+n)(2n+1)...(3n)$ product of $3$ numbers each divisible by $n!$ and it keeps on increasing.
Also what will be the limit of $y_n= \sqrt[n]{x_n}$ ?
$$\lim_{n\rightarrow+\infty}\frac{(3n)!}{(n!)^3}=\lim_{n\rightarrow+\infty}\binom{3n}{n,n,n}=+\infty.$$ By the way, always there is the following. $$\frac{(3n)!}{(n!)^3}=\frac{3n}{n}\cdot\frac{3n-1}{n-1}\cdot...\cdot\frac{2n+1}{1}\cdot\frac{2n}{n}\cdot\frac{2n-1}{n-1}\cdot...\cdot\frac{n+1}{1}>n\rightarrow+\infty.$$