Is there any criteria to determine if a elliptic equation comes from energy minimizing problem? For example, if I have a elliptic equation in divergence form $\nabla \cdot A(x,u,\nabla u)+|\nabla u|=0$ (Supposed that I have found the the energy for the term $\nabla \cdot A(x,u,\nabla u)$). Is this equation has no variational structure? How about the general form $\nabla \cdot A(x,u,\nabla u)+B(x,u,\nabla u)=0$?
2026-02-22 19:30:02.1771788602
How to determine if elliptic equation comes from variational problem?
124 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PARTIAL-DIFFERENTIAL-EQUATIONS
- PDE Separation of Variables Generality
- Partial Derivative vs Total Derivative: Function depending Implicitly and Explicitly on Variable
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Harmonic Functions are Analytic Evan’s Proof
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
- Regular surfaces with boundary and $C^1$ domains
- How might we express a second order PDE as a system of first order PDE's?
- Inhomogeneous biharmonic equation on $\mathbb{R}^d$
- PDE: Determine the region above the $x$-axis for which there is a classical solution.
- Division in differential equations when the dividing function is equal to $0$
Related Questions in CALCULUS-OF-VARIATIONS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Weak formulation of Robin boundary condition problem
- Why is the index of a harmonic map finite?
- Variational Formulation - inhomogeneous Neumann boundary
- Relationship between Training Neural Networks and Calculus of Variations
- How to prove a Minimal Surface minimizes Surface Tension
- Does the covariant derivative commute with the variational derivative?
- Derivative of a functional w.r.t. a single point?
- calculus of variations with double integral textbook?
- $-\nabla \cdot (A\nabla u)=f$ has a weak solution in $H^1$ $\iff$ $\int_\Omega f+\int_{\partial \Omega }g=0$.
Related Questions in ELLIPTIC-EQUATIONS
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
- Definition of constant coefficient elliptic operator
- Weak formulation of Robin boundary condition problem
- Harmonic functions satisfying given inequality
- How to get the equation of an ellipse given the center, directrix and length of latus rectum?
- Regularity of the Divergence of Weak Solutions to Elliptic PDEs
- Define a "Neumann" trace of a harmonic function on bounded domain
- How to determine if elliptic equation comes from variational problem?
- What is the parametric equation of a rotated Ellipse (given the angle of rotation)
- how to solve a linear pde of changing evolution equation?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If the equation is of the form $$ \nabla \cdot A(x,u,\nabla u) + B(x,u,\nabla u) =0, $$then such an equation can be brought into variational form by integration by parts.
The corresponding natural boundary condition would be of the type $$ A(x,u,\nabla u) \cdot \nu = 0. $$ If the boundary condition has a different form then it might be again difficult to bring the equation into variational form.
An equation of the type $$ -a(x)\Delta u(x)=f(x) $$ with non-smooth $a$ is hard to bring into a variational form, which allows for an easy solution theory.