The Formula of a ROTATED Ellipse is:
$$\dfrac {((X-C_x)\cos(\theta)+(Y-C_y)\sin(\theta))^2}{(R_x)^2}+\dfrac{((X-C_x) \sin(\theta)-(Y-C_y) \cos(\theta))^2}{(R_y)^2}=1$$
There:
- $(C_x, C_y)$ is the center of the Ellipse.
- $R_x$ is the Major-Radius, and $R_y$ is the Minor-Radius.
- $\theta$ is the angle of the Ellipse rotation.
What is the parametric equation of the Ellipse - equations of X and Y - given the Radiuses, Center, Angle to the Point ($\alpha$), and Angle of Ellipses rotation ($\theta$)??
See the graph of the rotated ellipse at: https://www.desmos.com/calculator/fu0ko0hali
Step 1 - The parametric equation of an ellipse
The parametric formula of an ellipse centered at $(0, 0)$, with the major axis parallel to the $x$-axis and minor axis parallel to the $y$-axis:
$$ x(\alpha) = R_x \cos(\alpha) \\ y(\alpha) = R_y \sin(\alpha) $$
where:
Step 2 - Rotate the equation
The rotation is given by the mapping: $$ x(\theta) = \cos(\theta) x - \sin(\theta) y\\ y(\theta) = \sin(\theta) x + \cos(\theta) y $$ where:
Once we put the ellipse equation in the rotation equation we get: $$ x(\alpha) = R_x \cos(\alpha) \cos(\theta) - R_y \sin(\alpha) \sin(\theta) \\ y(\alpha) = R_x \cos(\alpha) \sin(\theta) + R_y \sin(\alpha) \cos(\theta) $$
Step 3 - Shift the equation from the center at $(0, 0)$
To shift any equation from the center we add $C_x$ to the $x$ equation and $C_y$ to the $y$ equation. Therefore the equation of a rotated ellipse is: $$ x(\alpha) = R_x \cos(\alpha) \cos(\theta) - R_y \sin(\alpha) \sin(\theta) + C_x \\ y(\alpha) = R_x \cos(\alpha) \sin(\theta) + R_y \sin(\alpha) \cos(\theta) + C_y $$
where: