I have a directed, edge-labled, loop-allowed, double-edge-disallowed (with different label allowed, with same disallowed that is) Graph $G$ with Vertices $v\in V_G$ and Edges $e\in E_G$. Each edge gets assigned a sourcenode, targetnode and label via the functions src, tgt and lab. I want to express the set of sets of edges with same src and tgt nodes. I think $\bigcup_{(v_1,v_2)\in V_G^2}\{\{e\in E_G:src(e)=v_1\wedge tgt(e)=v_2\}\}$ might be right, but I'm really not sure at all.
2026-02-22 23:12:16.1771801936
How to I correctly specify the following set of sets of edges of a graph
28 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ELEMENTARY-SET-THEORY
- how is my proof on equinumerous sets
- Composition of functions - properties
- Existence of a denumerble partition.
- Why is surjectivity defined using $\exists$ rather than $\exists !$
- Show that $\omega^2+1$ is a prime number.
- A Convention of Set Builder Notation
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- Problem with Cartesian product and dimension for beginners
- Proof that a pair is injective and surjective
- Value of infinite product
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in FIRST-ORDER-LOGIC
- Proving the schema of separation from replacement
- Find the truth value of... empty set?
- Exchanging RAA with double negation: is this valid?
- Translate into first order logic: "$a, b, c$ are the lengths of the sides of a triangle"
- Primitive recursive functions of bounded sum
- Show formula which does not have quantifier elimination in theory of infinite equivalence relations.
- Logical Connectives and Quantifiers
- Is this proof correct? (Proof Theory)
- Is there only a finite number of non-equivalent formulas in the predicate logic?
- How to build a list of all the wfs (well-formed sentences)?
Related Questions in SATISFIABILITY
- How to prove that 3-CNF is satisfiable using Hall's marriage theorem?
- validity reduction between FOL fragments
- Reduction 3SAT to Subset Sum
- Is $\forall_x\forall_y\forall_z\Big(P(x,x)\wedge(P(x,z)\implies\big(P(x,y)\vee P(y,z)\big)\Big)\implies\exists_x\forall_y P(x,y)$ tautology?
- How to I correctly specify the following set of sets of edges of a graph
- First Order Logic - unsatisfiable set of formulas
- First Order Logic - Logical Consequence and Paradox
- Integer Programming (non $0-1$) Reduction to show $NP$ Completeness
- Induction on formulas for substitution
- Why doesn't implication graph work for 3SAT as it does for 2SAT?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
$\{ \{ e\in E_G : src(e) = v_1 \wedge tgt(e) = v_2 \} : v_1,v_2 \in V_G \}$