Is formula $$ \forall_x\forall_y\forall_z\Big(P(x,x)\wedge(P(x,z)\implies\big(P(x,y)\vee P(y,z)\big)\Big)\implies\exists_x\forall_y P(x,y) $$ a tautology?
What's method to check this? Do I need to try to construct model which would be counterexample and try to take some conclusions from it or is there some easier way?
Let's re-write the formula : $$\forall_x\forall_y\forall_z\Big(P(x,x)\wedge(P(x,z)\implies\big(P(x,y)\vee P(y,z)\big)\Big)\implies\exists_x\forall_y P(x,y)$$ $$\leftrightarrow \text{Because} \ (A \implies B) \equiv (\lnot A \lor B)$$ $$\forall_x\forall_y\forall_z\Big(P(x,x)\wedge( \lnot P(x,z)\lor\big(P(x,y)\vee P(y,z)\big)\Big)\implies\exists_x\forall_y P(x,y)$$ $$\leftrightarrow \text{Using the distributivity}$$ $$\forall_x\forall_y\forall_z\Big(\big(P(x,x)\wedge \lnot P(x,z)\big)\lor\big((P(x,x)\wedge P(x,y)\big)\lor\big((P(x,x)\wedge P(y,z)\big)\Big)\implies\exists_x\forall_y P(x,y)$$ $$\leftrightarrow \text{Using} \ (A \implies B) \equiv (\lnot A \lor B)$$ $$ \lnot\Bigg(\forall_x\forall_y\forall_z\Big(\big(P(x,x)\wedge \lnot P(x,z)\big)\lor\big((P(x,x)\wedge P(x,y)\big)\lor\big((P(x,x)\wedge P(y,z)\big)\Big)\Bigg)\lor\exists_x\forall_y P(x,y)$$ $$\leftrightarrow \text{Using de Morgan on $\lnot\forall_{x,y,z}$}$$ $$ \Bigg(\exists_x\exists_y\exists_z\lnot\Big(\big(P(x,x)\wedge \lnot P(x,z)\big)\lor\big((P(x,x)\wedge P(x,y)\big)\lor\big((P(x,x)\wedge P(y,z)\big)\Big)\Bigg)\lor\exists_x\forall_y P(x,y)$$ $$\leftrightarrow \text{Using $\lnot( A \lor B) \equiv (\lnot A \land \lnot B) $}$$ $$ \Bigg(\exists_x\exists_y\exists_z\Big(\lnot\big(P(x,x)\wedge \lnot P(x,z)\big)\land\lnot\big((P(x,x)\wedge P(x,y)\big)\land\lnot\big((P(x,x)\wedge P(y,z)\big)\Big)\Bigg)\lor\exists_x\forall_y P(x,y)$$ $$\leftrightarrow \text{Using $\lnot( A \land B) \equiv (\lnot A \lor \lnot B) $}$$ $$ \Bigg(\exists_x\exists_y\exists_z\Big(\big(\lnot P(x,x)\lor P(x,z)\big)\land\big((\lnot P(x,x)\lor \lnot P(x,y)\big)\land\big((\lnot P(x,x)\lor \lnot P(y,z)\big)\Big)\Bigg)\lor\exists_x\forall_y P(x,y)$$ $$\leftrightarrow \text{Using $(\exists_x A) \lor (\exists_x B) \equiv \exists_x (A \lor B)$}$$ $$ \exists_x\exists_y\exists_z\Bigg(\Big(\big(\lnot P(x,x)\lor P(x,z)\big)\land\big((\lnot P(x,x)\lor \lnot P(x,y)\big)\land\big((\lnot P(x,x)\lor \lnot P(y,z)\big)\Big)\lor \big(\forall_y P(x,y)\big)\Bigg)$$
If you want to prove a tautology here you just need to prove that $\big(\forall_y P(x,y)\big)$ is true for a fixed x.