How do I integrate:
$$\frac 1t\sqrt{1-4x^2}$$
I am thinking about (Integrals of Inverse Hyperbolic Function):
$$\frac{-1}{a} \operatorname{arcsech}\left(\frac xa\right)+C$$
But do I need to use substitution for $2x$?
How do I integrate:
$$\frac 1t\sqrt{1-4x^2}$$
I am thinking about (Integrals of Inverse Hyperbolic Function):
$$\frac{-1}{a} \operatorname{arcsech}\left(\frac xa\right)+C$$
But do I need to use substitution for $2x$?
HINT:
$$\int\left(\frac{1}{x\sqrt{1-4x^2}}\right)\text{d}x=$$
Substitute $u=\sqrt{1-4x^2}$ and $\text{d}u=-\frac{4x}{\sqrt{1-4x^2}}\text{d}x$:
$$\int\left(\frac{1}{u^2-1}\right)\text{d}u=$$ $$-\int\left(\frac{1}{1-u^2}\right)\text{d}u=$$ $$-\tanh^{-1}(u)+C$$
Substitute everything back and you got the final answer!