Let $X$ be a normed vector space. Let $f:X\mapsto \mathbb{R}$ be a continuous convex function. How to show that there exists a continuous linear functional $l$ and a constant $c\in\mathbb{R}$ such that $f(x)>l(x)+c$ holds for all $x\in X$? I think it could be proved by hyperplane separation theorem. But I don't know how to start it.
2026-02-22 23:37:17.1771803437
How to prove that continuous convex functional on normed vector space must be lower bounded by some continuous affine functional?
253 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in CONVEX-ANALYSIS
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
- Convex open sets of $\Bbb R^m$: are they MORE than connected by polygonal paths parallel to the axis?
- Show that this function is concave?
- In resticted domain , Applying the Cauchy-Schwarz's inequality
- Area covered by convex polygon centered at vertices of the unit square
- How does positive (semi)definiteness help with showing convexity of quadratic forms?
- Why does one of the following constraints define a convex set while another defines a non-convex set?
- Concave function - proof
- Sufficient condition for strict minimality in infinite-dimensional spaces
- compact convex sets
Related Questions in NORMED-SPACES
- How to prove the following equality with matrix norm?
- Closure and Subsets of Normed Vector Spaces
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Minimum of the 2-norm
- Show that $\Phi$ is a contraction with a maximum norm.
- Understanding the essential range
- Mean value theorem for functions from $\mathbb R^n \to \mathbb R^n$
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Gradient of integral of vector norm
Related Questions in CONVEX-GEOMETRY
- Lemma 1.8.2 - Convex Bodies: The Brunn-Minkowski Theory
- Why does one of the following constraints define a convex set while another defines a non-convex set?
- Is the logarithm of Banach-Mazur distance between convex bodies an actual distance?
- Convex set in $\mathbb{R}^2_+$
- Unit-length 2D curve segment with maximal width along all directions
- A point in a convex hull
- Geometric proof of Caratheodory's theorem
- The permutations of (1,1,0,0), (-1,1,0,0), (-1,-1,0,0) are vertices of a polytope.
- Computing the subgradient of an indicator function or the normal cone of a set
- 3 Dimensional space
Related Questions in HAHN-BANACH-THEOREM
- Proving that $\exists f \in X^*$ : $f(x) = \|x\|^2$ and $\|f\| = \|x\|$
- Showing that $\exists f \in X^*$ : $\|f\| = \frac{1}{d(x_0,Y)}, \; f(x_0) = 1$ and $f(y) = 0$.
- Show that $x_0 \in \overline{\langle M \rangle } $ if and only if $f(x_0) = 0, \; \forall f \in X^* : f|_M = 0$.
- Easy way to extend continous functional
- How to prove that continuous convex functional on normed vector space must be lower bounded by some continuous affine functional?
- (Hahn-Banach) Is a subadditive and positively homogeneous function continuous at $0$?
- An "open-strict" Version of Hahn Banach Separation Theorem?
- Is a Hahn-Banach extension always continuous?
- Corollary of the Hahn Banach theorem
- Hahn Banach Theorem, First geometric form
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The epigraph $\operatorname{epi}f$ is closed and convex set in $X\times\Bbb R$ and $(x,f(x)-\epsilon)\not\in\operatorname{epi}f$ is compact for any $\epsilon>0$ and $x\in X$. By the separation theorem there exists a non-zero $(\phi,\psi)\in(X\times\Bbb R)'=X'\times\Bbb R$ such that the hyperplane $(\phi,\psi)\cdot(x,y)=\phi(x)+\psi y=\alpha$ separates $\operatorname{epi}f$ and the point. We can choose the sign such that $\operatorname{epi}f$ belongs to the half-space $\phi(x)+\psi y>\alpha$. Clearly $\psi\ne 0$ since $\phi(x)>\alpha$ is not possible for all $x\in X$ and $\phi\ne 0$. Hence, $\psi>0$ otherwise $y\to+\infty$ (still in $\operatorname{epi}f$) will give us a contradiction with $\phi(x)+\psi y>\alpha$. Finally $(x,f(x))\in\operatorname{epi}f$ then $\phi(x)+\psi f(x)>\alpha$. Divide by $\psi$ and move the things around.