I am trying to solve the following Sturm-Liouville problem:
$$ \begin{cases} y'' + \lambda y = 0 \\ y(x_0) = 0 = y(x_1) \end{cases} $$
In the interesting case where $\lambda > 0$ I get the following equations:
$$ \begin{cases} A \sin(\sqrt{\lambda}x_0) + B \cos(\sqrt{\lambda}x_0) = 0 \\ A \sin(\sqrt{\lambda}x_1) + B \cos(\sqrt{\lambda}x_1) = 0 \end{cases} $$
The main difficulty here is discussing this system. Apparently the solution should be $$y_n(x) = B_n \sin\Big(\frac{n \pi x}{x_1-x_0}\Big).$$
Define $u(x) = y(x + x_0)$, then$$ \begin{cases} u'' + λu = 0\\ u(0) = u(x_1 - x_0) = 0 \end{cases} $$ which reduces the original problem to an easier form.