When learning about Sturm-Liouville operators and their properties, we also learned that any second order linear differential operator can be written in Sturm Liouville form after multiplying by an appropriate weight function. We solved some problems using this approach, and the key reasons for using sturm liouville operators seemed to be the orthogonality of the eigenfunctions, and that they form a complete basis. However these are only properties of Sturm Liouville operators because they are self adjoint (glossing over the boundary requirements needed for this to be the case). So this begs the question as to whether all second order linear differential operators that are self-adjoint are necessarily in Sturm-Liouville form? And, if not, why bother with putting the operators in this form anyway?
2026-02-22 20:41:54.1771792914
Is a Sturm-Liouville operator the only 2nd order linear differential operator that is self-adjoint/Hermitian?
375 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in ORDINARY-DIFFERENTIAL-EQUATIONS
- The Runge-Kutta method for a system of equations
- Analytical solution of a nonlinear ordinary differential equation
- Stability of system of ordinary nonlinear differential equations
- Maximal interval of existence of the IVP
- Power series solution of $y''+e^xy' - y=0$
- Change of variables in a differential equation
- Dimension of solution space of homogeneous differential equation, proof
- Solve the initial value problem $x^2y'+y(x-y)=0$
- Stability of system of parameters $\kappa, \lambda$ when there is a zero eigenvalue
- Derive an equation with Faraday's law
Related Questions in ORTHOGONALITY
- Functions on $\mathbb{R}^n$ commuting with orthogonal transformations
- Proving set of orthogonal vectors is linearly indpendent
- Find all vectors $v = (x,y,z)$ orthogonal to both $u_1$ and $u_2$.
- Calculus III Vector distance problem.
- Is there a matrix which is not orthogonal but only has A transpose A equal to identity?
- Number of Orthogonal vectors
- Find the dimension of a subspace and the orthogonality complement of another
- Forming an orthonormal basis with these independent vectors
- orthogonal complement - incorrect Brézis definition
- Orthogonal Projection in Inner Product
Related Questions in EIGENFUNCTIONS
- What's wrong with the boundary condition of this $1$st order ODE?
- Find eigenfunction/eigenvalue pairs of DE
- Reference for Neumann Laplace eigenfunctions
- Does every representation of the harmonic oscillator Lie algebra necessarily admit a basis of eigenfunctions?
- Role of the interval for defining inner product and boundary conditions in Sturm Liouville problems.
- Projection onto the space spanned by eigenfunctions in a Hilbert space
- Why can we assume that these eignenfunctions are known, in the Sturm-Liouville problem?
- Is it possible to explicitly solve the inhomogeneous Helmholtz equation in a rectangle?
- Simplify the following expression by matrix calculus and orthonormal properties of eigenfunctions
- What is the equality of this integral which includes Dirac-Delta function?
Related Questions in DIFFERENTIAL-OPERATORS
- Why is the differential operator equal to an integer in the case of trignometric equations?
- How to prove that inequality for every $f\in C^\infty_0(\Bbb{R})$.
- describe ring of derivation of continuous map on manifold
- Implicit Differentiation Doubt
- If a self-adjoint operator $A$ commutes with a bounded operator $B$, then $\ker B$ is contained in the domain of $A$
- Usage of the del operator $ \nabla $ as a vector.
- The Laplacian operator of $\;{ {\zeta}_0}^2+{ {\zeta}_1}^2=1\;$
- The algebra generated by derivations
- Differential operator acting on a constant
- Closed form/ meaning of sum of geometric series of operator exponentials
Related Questions in STURM-LIOUVILLE
- Why boundary conditions in Sturm-Liouville problem are homogeneous?
- Solving Sturmian Equation
- Common solution to Integral Equation and Differential Equation
- Role of the interval for defining inner product and boundary conditions in Sturm Liouville problems.
- Orthogonality of Bessel function
- Sturm Liouville applied to a Laplace equation
- Higher order Sturm-Liouville form
- How to solve Sturm-Liouville problem $y'' + \lambda y = 0$ with unknown initial conditions?
- Is a Sturm-Liouville operator the only 2nd order linear differential operator that is self-adjoint/Hermitian?
- System of Schrodinger equations
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?