Given a formal system called "$P0$" that has 1 rule (Modus Ponens) and 3 axioms:
$1.$ $\alpha$ $\rightarrow$$(\beta \rightarrow \alpha)$ --- (Ak)
$2.$ $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta ) \rightarrow (\alpha \rightarrow \gamma))$ --- (AS)
$3.$ $(\lnot \beta \rightarrow \lnot \alpha) \rightarrow ((\lnot \beta \rightarrow \alpha) \rightarrow \beta)$ --- (A$\lnot$)
How do I replace the wff of the axioms with real wff to prove a derivation like : $\vdash \alpha \rightarrow \alpha$.
What wff should I use to set up the derivation and use the axioms to prove it?
That one is well known, but hard to come up with by yourself from scratch, certainly when you just begin to study this system. Indeed, typically textbooks will just provide this one:
$1. \ (\alpha \rightarrow ((\alpha \rightarrow \alpha)) \rightarrow \alpha) \rightarrow ((\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha)) \quad (AS)$
$2. \ \alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha) \quad (Ak)$
$3. \ (\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha) \quad (MP \ 1,2)$
$4. \ \alpha \rightarrow (\alpha \rightarrow \alpha) \quad (Ak)$
$5. \ \alpha \rightarrow \alpha \quad (MP \ 3,4)$