Let \begin{equation} g (n) = 2 \pi e^{1 + W \left( \frac{8 n + 1}{8 e} \right)} \end{equation} be the approximate value of the $n$-th Gram point where W is the Lambert W function . Now define \begin{equation} G (n) = \frac{Z (g (n))}{| Z (g (n)) |} + \frac{Z (g (n + 1))}{| Z (g (n + 1)) |} \end{equation} where Z is the Hardy Z function then the function defined by \begin{equation} B (n) = \frac{1}{4} G (n - 1) G (n) \end{equation} takes on the value $1$ when $n$ is a 'bad' Gram point for which $(- 1)^{n + 1} Z (g (n)) > 0$ and the value $0$ when it is a 'good' Gram point $(- 1)^{n + 1} Z (g (n)) < 0$.
2026-02-22 21:48:27.1771796907
ideas on how to prove this statement about the Gram points?
54 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in ANALYTIC-NUMBER-THEORY
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- question regarding nth prime related to Bertrands postulate.
- Alternating sequence of ascending power of 2
- Reference for proof of Landau's prime ideal theorem (English)
- Does converge $\sum_{n=2}^\infty\frac{1}{\varphi(p_n-2)-1+p_n}$, where $\varphi(n)$ is the Euler's totient function and $p_n$ the $n$th prime number?
- On the behaviour of $\frac{1}{N}\sum_{k=1}^N\frac{\pi(\varphi(k)+N)}{\varphi(\pi(k)+N)}$ as $N\to\infty$
- Analytic function to find k-almost primes from prime factorization
- Easy way to prove that the number of primes up to $n$ is $\Omega(n^{\epsilon})$
- Eisenstein Series, discriminant and cusp forms
Related Questions in RIEMANN-ZETA
- How to find $f(m)=\prod\limits_{n=2}^{\infty}\left(1-\frac{1}{n^m}\right)^{-1}$ (if $m>1$)?
- Is $e^{u/2}\sum_{n=-\infty}^{\infty}e^{-\pi n^{2}e^{2u}}$ even?
- Explanation of trivial zeros of the Riemann Zeta Function
- How can I prove $\frac{\zeta(k)}{\zeta(k+1)}=\sum\limits_{n=1}^{\infty}\frac{\varphi(n)}{n}\cdot\frac{1}{n^k}$?
- Find the value of $A+B+C$ in the following question?
- Computing the value of a spectral zeta function at zero
- Riemann zeta meromorphic cont. using Abel summation formula
- Show that $\int_0^1\frac{\ln(x)^n}{x-1}dx=(-1)^{n+1}n!\zeta(n+1)$, for $n\geq 1$
- The sum of $\sum_{k=0}^{\infty}\frac{\zeta(2k+2)-1}{{2k+1}}$
- Verify the Riemann Hypothesis for first 1000 zeros.
Related Questions in LAMBERT-W
- Intersection points of $2^x$ and $x^2$
- Solving tetration equation with Lambert W Function
- Solving $x \log(x)$ = $100$.
- Is $x=i²$ the solution of this equation $2018^x+2018x+2018=0 $ in $\mathbb{C}$?
- How to solve $x3^x=18$ algebraically
- ideas on how to prove this statement about the Gram points?
- Solving $n/\ln (n) = 990,000$
- Solve $a^x = 1-x$
- Prove that $-\gamma x^2 ( x^{k/\gamma}-1 ) -x^2 + \alpha x - \alpha + 1 \leq 0$ for every $2 \leq x \leq n-1$
- Area under the infinite tetration curve
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?