ideas on how to prove this statement about the Gram points?

54 Views Asked by At

Let \begin{equation} g (n) = 2 \pi e^{1 + W \left( \frac{8 n + 1}{8 e} \right)} \end{equation} be the approximate value of the $n$-th Gram point where W is the Lambert W function . Now define \begin{equation} G (n) = \frac{Z (g (n))}{| Z (g (n)) |} + \frac{Z (g (n + 1))}{| Z (g (n + 1)) |} \end{equation} where Z is the Hardy Z function then the function defined by \begin{equation} B (n) = \frac{1}{4} G (n - 1) G (n) \end{equation} takes on the value $1$ when $n$ is a 'bad' Gram point for which $(- 1)^{n + 1} Z (g (n)) > 0$ and the value $0$ when it is a 'good' Gram point $(- 1)^{n + 1} Z (g (n)) < 0$.