Perfect numbers is a number that is half the sum of all of its positive divisors .And solitary numbers means that $\frac {\sigma(n)}{n}$ is an irreducible fraction, it's seems to me that all even perfect numbers are irrelevent from the list of solitary numbers, then i come up with this question: What about odd perfect number if it exist then could be a solitary number ?
2026-02-22 19:52:04.1771789924
If an odd perfect number exist could be a solitary number?
95 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in PERFECT-NUMBERS
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- Are there imperfects or pluperfects numbers?
- If an odd perfect number exist could be a solitary number?
- What about the equation $\sigma(2n)=2\left(n+\sigma(n)\right),$ involving the sum of divisor function?
- Does the existence of infinite number of Leinster groups indicate the existence of infinite number of perfect numbers?
- Bounds for an expression involving the divisors of an odd perfect number
- Is the occurence of two perfect numbers a coincidence?
- If $q^k n^2$ is an odd perfect number with Euler prime $q$, does this equation imply that $k=1$?
- On miscellaneous questions about perfect numbers III
- Any proof for :Sum of two perfect number never be a perfect number?
Related Questions in DIVISOR-COUNTING-FUNCTION
- Bound on Divisor Counting Function
- Help in showing that a function is multiplicative
- Find all postive integers $n$ such that $n+\tau{(n)}=2\varphi{(n)}$
- Find all postive integers $n$ such that $n+\varphi{(n)}=2\tau{(n)}$
- Modified sieve to find count all the divisors from 1 to n in o(n) time
- A conjecture concerning the number of divisors and the sum of divisors.
- Proof of sum of positive divisors of $n$ (probably repeated question somewhere in the stack)
- Can I efficiently (without brute force) determine the smallest number having the given property?
- Has $\sigma\left(\sigma_0(n)^4\right)=n$ infinitely many solutions?
- Can the multiplication formula for the Hurwitz zeta function be extended to include this sum?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If $n$ is a perfect number then $n| \sigma(n)$ .
A number is solitary when $n$ and $\sigma(n)$ are coprime.
The only way in which a number is perfect and solitary at the same time is if $n| gcd(n, \sigma(n))$ and $gcd(n, \sigma(n))=1$, meaning $n=1$.
But $n=1$ is not perfect.