I have some problems with my notes: my teacher wrote that if a sequence $\{g_j\}_j\subseteq L^{1,\infty}(\Bbb R^n)$ (which is the weak $L^1$ space, endowed with the quasinorm $||\cdot||_{1,\infty}$) converges here, i.e. $\exists g\in L^{1,\infty}(\Bbb R^n)$ such that $||g_j-g||_{1,\infty}\to0$, then $||g_j||_{1,\infty}\to||g||_{1,\infty}$, and this is because given $f,g\in L^{1,\infty}(\Bbb R^n)$ then $$ ||f+g||_{1,\infty}\le(1+\varepsilon)||f||_{1,\infty}+C(\varepsilon)||g||_{1,\infty},\;\;\exists C(\varepsilon)$$
Can someone shade a light on these two facts? Many thanks
The problem here is that we do not have the triangle inequality and its reversed version. However, with the given hint, we have for each positive $\varepsilon$, $$\lVert g_j\rVert_{1,\infty}\leqslant (1+\varepsilon)\lVert g\rVert_{1,\infty}+C(\varepsilon)\lVert g-g_j\rVert_{1,\infty}$$ hence $$\tag{1}\limsup_{j\to +\infty}\lVert g_j\rVert_{1,\infty}\leqslant (1+\varepsilon)\lVert g\rVert_{1,\infty}.$$ We also have $$\lVert g\rVert_{1,\infty}\leqslant (1+\varepsilon)\lVert g_j\rVert_{1,\infty}+C(\varepsilon)\lVert g-g_j\rVert_{1,\infty}$$ hence $$\lVert g\rVert_{1,\infty}\leqslant (1+\varepsilon)\liminf_{j\to +\infty}\lVert g_j\rVert_{1,\infty}\tag{2}.$$ Combining (1) and (2), we derive that for each positive $\varepsilon$, $$\frac 1{1+\varepsilon}\lVert g\rVert_{1,\infty}\leqslant\liminf_{j\to +\infty}\lVert g_j\rVert_{1,\infty}\leqslant \limsup_{j\to +\infty}\lVert g_j\rVert_{1,\infty}\leqslant (1+\varepsilon)\lVert g\rVert_{1,\infty},$$ which gives the wanted result.