If $R$ is an integral domain, then $(R[x])^\times=R^\times$
So since $R$ is an integral domain, it follows that $R[x]$ is an integral domain. We have $f(x)g(x)=1$ then we know that $\deg(f(x)g(x))= \deg(f(x))+\deg(g(x))=0$
Since neither can be equal to zero, they are both non-zero degree $0$ polynomials, and therefore $f(x)=a,g(x)=b$ where $f,g\in R$. Hence all units in $R[x]$ must be units in $R$.
Is this acceptable?
Your proof seems fine.
Using your result try to prove the following general result:
Try to prove this result on your own. (Hint. Assume the result for domains and for any prime ideal $p$ of $R$ and for any polynomial $f(x)$, consider $ \bar f(x)$ in the integral domain $(R/p)[x]$ by reducing coefficients modulo $p$ and use the result for integral domains.)