Suppose $\{x_k\} \subseteq X$ where $X$ is a Banach space. $\{x_k\}$ satisfies \begin{align*} \|x_k - x_{k-1} \| \le \frac 1 {k^2}. \end{align*} It is clear $\{x_k\}$ is convergent since for sufficiently large $n, m$, \begin{align*} \|x_n - x_m\| \le \sum_{j=n}^m \frac 1 {j^2} \le \varepsilon. \end{align*} I would like to know whether it makes sense to consider the limit $\lim_{k \to \infty} \left( k x_k - (k-1) x_{k-1} \right)$. If it makes sense, is the computation following correct? \begin{align*} \lim_{k \to \infty} \left( k(x_k - x_{k-1}) + x_{k-1} \right) = \lim_{k \to \infty} k(x_k - x_{k-1}) + \lim_{k \to \infty} x_{k-1} = x \\ \end{align*}
2026-02-22 19:36:40.1771789000
If $\|x_k - x_{k-1}\| \le \frac{1} {k^2}$, what is the limit of $\lim_{k \to \infty} (k x_k - (k-1) x_{k-1})$?
131 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in SEQUENCES-AND-SERIES
- How to show that $k < m_1+2$?
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Negative Countdown
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Show that the sequence is bounded below 3
- A particular exercise on convergence of recursive sequence
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Powers of a simple matrix and Catalan numbers
- Convergence of a rational sequence to a irrational limit
- studying the convergence of a series:
Related Questions in CONVERGENCE-DIVERGENCE
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Conditions for the convergence of :$\cos\left( \sum_{n\geq0}{a_n}x^n\right)$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Pointwise and uniform convergence of function series $f_n = x^n$
- studying the convergence of a series:
- Convergence in measure preserves measurability
- If $a_{1}>2$and $a_{n+1}=a_{n}^{2}-2$ then Find $\sum_{n=1}^{\infty}$ $\frac{1}{a_{1}a_{2}......a_{n}}$
- Convergence radius of power series can be derived from root and ratio test.
- Does this sequence converge? And if so to what?
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
Related Questions in CAUCHY-SEQUENCES
- Closure and Subsets of Normed Vector Spaces
- Proof check - If two sequences A and B are equivalent, then the first one is a Cauchy sequence if and only if the second one is a Cauchy sequence too
- Proof check - The multiplication of two real numbers is a real number (Cauchy sequences)
- If $\|x_k - x_{k-1}\| \le \frac{1} {k^2}$, what is the limit of $\lim_{k \to \infty} (k x_k - (k-1) x_{k-1})$?
- Prove that $f$ has a fixed-point $x_0$ with $x_0 > 0$
- Proving that the sequence $\{\frac{3n+5}{2n+6}\}$ is Cauchy.
- Why can't all pointwise continuous functions preserve Cauchy sequences?
- Proving that sequence with given criteria is Cauchy?
- Determining whether sequence $a_n=\sum_{k=1}^n\frac n{n^2+k}$ is convergent or not.
- How does the Cauchy criterion for double series imply that the comparison test can be applied to double series if the terms are nonnegative?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, in any normed space, if $x_n \to a$ and $y_n \to b$ then $x_n+y_n \to a+b$.
Also, note that $$\| k(x_k - x_{k-1}) \| = |k| \|x_k - x_{k-1} \| \leq \frac{1}{k}$$ implies $$\lim_{k \to \infty} (k(x_k - x_{k-1})) =0 $$
In general $x_n \to a$ in a normed space if and only if $\|x_n-a \| \to 0$ in $\mathbb R$.