$\int_0^{\pi/2} \sec^a(t)\,dt= \frac{\sqrt{\pi}}{2\Gamma\left(1-\frac{a}{2}\right)}\Gamma\left(\dfrac{1-a}{2}\right)$

297 Views Asked by At

Inside the Wolfram Documentation page for the secant function, an identity is given which involves the gamma function, polygamma function, and Catalan's constant.

Notes on documentation page:

Some special functions can be used to evaluate more complicated definite integrals. For example, polygamma and gamma functions and the Catalan constant are needed to express the following integral: $$\int_0^{\pi/2} \sec^a(t)\,dt= \frac{\sqrt{\pi}}{2\Gamma\left(1-\frac{a}{2}\right)}\Gamma\left(\dfrac{1-a}{2}\right),\quad\text{$\operatorname{Re}(a)<1$} $$

I know that the Gamma function is defined as

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x}\, dx, \quad\text{$\operatorname{Re}(z)>0$}$$

and Catalan's constant can be written as

$$G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots$$

but I don't see how this helps. I couldn't find a source in the Wolfram documentation page and couldn't find a duplicate question on Math SE. How did the author of the Wolfram page arrive at this identity?

3

There are 3 best solutions below

0
On BEST ANSWER

To derive the identity, it is a straight up application of the Beta function in the form $$\operatorname{B}(m,n) = 2 \int_0^{\frac{\pi}{2}} \cos^{2m - 1} t \sin^{2n - 1} t \, dt.$$

For the secant integral, we have \begin{align} \int_0^{\frac{\pi}{2}} \sec^a t \, dt &= \int_0^{\frac{\pi}{2}} \cos^{-a} t \, dt\\ &= \frac{1}{2} \cdot 2 \int_0^{\frac{\pi}{2}} \cos^{2\left (\frac{1 - a}{2} \right ) - 1} t \sin^{2 \left (\frac{1}{2} \right ) - 1} t \, dt\\ &= \frac{1}{2} \operatorname{B} \left (\frac{1 - a}{2}, \frac{1}{2} \right )\\ &= \frac{1}{2} \frac{\Gamma \left (\frac{1 - a}{2} \right ) \Gamma \left (\frac{1}{2} \right )}{\Gamma \left (\frac{1 - a}{2} + \frac{1}{2} \right )}\\ &= \frac{\sqrt{\pi}}{2 \Gamma \left (1 - \frac{a}{2} \right )} \Gamma \left (\frac{1 - a}{2} \right ), \end{align} for $a < 1$, as required. Here the following well-known results of $$\operatorname{B} (a,b) = \frac{\Gamma (a) \Gamma (b)}{\Gamma (a + b)},$$ together with $\Gamma (\frac{1}{2}) = \sqrt{\pi}$, have been used.

0
On

$$I=\int_{0}^{\pi/2} (\cos x)^{-a}~ dx =\frac{1}{2}\frac{\Gamma(\frac{1}{2})~\Gamma(\frac{1-a}{2})}{\Gamma(\frac{2-a}{2})}=\frac{\sqrt{\pi}}{2} \frac{\Gamma(\frac{1-a}{2})}{\Gamma({1-\frac{a}{2}})}.$$ Here we have used HGamma functions and the trigonometric form of the $\beta$-integral.See https://en.wikipedia.org/wiki/Beta_function

0
On

Assuming $0 \leq t \leq \frac \pi 2$, the antiderivative is $$\int \sec^a(t)\,dt=\sin (t) \,\, _2F_1\left(\frac{1}{2},\frac{a+1}{2};\frac{3}{2};\sin ^2(t)\right)$$ where appears the gaussian hypergeometric function. $$\int_0^x \sec^a(t)\,dt=\sin (x) \,\, _2F_1\left(\frac{1}{2},\frac{a+1}{2};\frac{3}{2};\sin ^2(x)\right)$$I suppose that they have been considering the asymptotics of $$\sqrt y \,\, _2F_1\left(\frac{1}{2},\frac{a+1}{2};\frac{3}{2};y\right)$$ when $y \to 1^-$.

Have a look at @Semiclassical's answer to this question. Quoting him

If $\Re(c)>\Re(a+b)$, then $$F(a,b;c;1)=\dfrac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}$$

Using the actual values, we end with $$\int_0^{\pi/2} \sec^a(t)\,dt==\frac12\frac{\Gamma \left(\frac{1-a}{2}\right)}{ \Gamma \left(\frac{2-a}{2}\right)}$$