Some years ago, someone had shown me the formula (1). I have searched for its origin and for a proof. I wasn't able to get true origin of this formula but I was able to find out an elementary proof for it.
Since then, I'm interested in different approaches to find more formulae as (1).
What other formulas similar to ($1$) are known?
Two days ago, reading the book of Lewin "Polylogarithms and Associated Functions" I was able to find out formula (2).
$\displaystyle \dfrac{1}{3}C=\int_0^1 \dfrac{1}{x}\arctan\left(\dfrac{x(1-x)}{2-x}\right)dx\tag1$
$\displaystyle \dfrac{2}{5}C=\int_0^1 \dfrac{1}{x}\arctan\left(\dfrac{\sqrt{5}x(1-x)}{1+\sqrt{5}-\sqrt{5}x}\right)dx-\int_0^1 \dfrac{1}{x}\arctan\left(\dfrac{x(1-x)}{3+\sqrt{5}-x}\right)dx\tag2$
$C$ being the Catalan's constant.
I have a proof for both of these formulae.
My approach relies on the following identity:
For all real $x>1$,
$\displaystyle \int_0^1 \dfrac{1}{t} \arctan \left (\dfrac{t(1-t)}{\frac{x+1}{2}-t}\right) dt=\int_1^{\frac{\sqrt{x}+1}{\sqrt{x}-1}}\dfrac{\log(t)}{1+t^2}dt$
For all $x\in [0,1]$ and $\alpha>1$,
$\displaystyle \arctan\left(\dfrac{x(1-x)}{\tfrac{1+\alpha^2}{(1-\alpha)^2}-x}\right)=\arctan\left(\dfrac{x}{\tfrac{1+\alpha^2}{\alpha(\alpha-1)}+\tfrac{1}{\alpha}x}\right)+\arctan\left(\dfrac{x}{\tfrac{1+\alpha^2}{1-\alpha}+\alpha x}\right)$
For all $\alpha>1$, $\displaystyle J(\alpha)=\int_0^1\dfrac{1}{x}\arctan\left(\dfrac{x(1-x)}{\tfrac{1+\alpha^2}{(1+\alpha)^2}-x}\right)dx=\int_0^{\tfrac{\alpha-1}{\alpha+1}} \dfrac{\arctan x}{x\left(1-\tfrac{1}{\alpha}x\right)}dx-\int_0^{\tfrac{\alpha-1}{\alpha+1}} \dfrac{\arctan x}{x(1+\alpha x)}dx$
For $x \in ]0,1]$,
$\dfrac{1}{x\left(1-\tfrac{1}{\alpha}x\right)}-\dfrac{1}{x\left(1+\alpha x\right)}=\dfrac{1}{\alpha-x}+\dfrac{\alpha}{1+\alpha x}$
Thus, one obtains,
$\displaystyle J(\alpha)=\int_0^{\tfrac{\alpha-1}{\alpha+1}}\dfrac{\arctan x}{\alpha-x}dx+\int_0^{\tfrac{\alpha-1}{\alpha+1}}\dfrac{\alpha \arctan x}{1+\alpha x}dx$
$\displaystyle J(\alpha)=\Big[-\log(\alpha-x)\arctan x\Big]_0^{\tfrac{\alpha-1}{\alpha+1}}+\int_0^{\tfrac{\alpha-1}{\alpha+1}}\dfrac{\log(\alpha-x)}{1+x^2}dx+\Big[\log(1+\alpha x)\arctan x\Big]_0^{\tfrac{\alpha-1}{\alpha+1}}-\int_0^{\tfrac{\alpha-1}{\alpha+1}}\dfrac{\log(1+\alpha x)}{1+x^2}dx$
$\displaystyle J(\alpha)=\int_0^{\tfrac{\alpha-1}{\alpha+1}}\dfrac{\log\left(\tfrac{\alpha-x}{1+\alpha x}\right)}{1+x^2}dx$
Using change of variable $y=\dfrac{\alpha-x}{1+\alpha x}$ ,
$\displaystyle J(\alpha)=\int_1^{\alpha} \dfrac{\log x}{1+x^2}dx$
If $\alpha=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}$, one obtains,
For all $x>1$, $\displaystyle \int_0^1 \dfrac{1}{t} \arctan \left (\dfrac{t(1-t)}{\tfrac{x+1}{2}-t}\right) dt=\int_1^{\tfrac{\sqrt{x}+1}{\sqrt{x}-1}}\dfrac{\log(t)}{1+t^2}dt$
when $x=3$, one obtains,
$\displaystyle \int_0^1 \dfrac{1}{t} \arctan \left (\dfrac{t(1-t)}{2-t}\right) dt=\int_1^{\tfrac{\sqrt{3}+1}{\sqrt{3}-1}}\dfrac{\log(t)}{1+t^2}dt=\int_1^{2+\sqrt{3}}\dfrac{\log(t)}{1+t^2}dt$
It's well known that:
$\displaystyle \int_1^{2+\sqrt{3}}\dfrac{\log(t)}{1+t^2}dt=\int_1^{2-\sqrt{3}}\dfrac{\log(t)}{1+t^2}dt=\dfrac{C}{3}$
(recall that, $\tan\left(\dfrac{\pi}{12}\right)=2-\sqrt{3}$ and see Integral: $\int_0^{\pi/12} \ln(\tan x)\,dx$ )