Integral of a Gaussian multiplied with a Confluent Hypergeometric Function?

100 Views Asked by At

$$\int_0^{\infty}\!\!\mathrm{d}x~x^2\,e^{-\alpha x^2+i\beta x}\,_1F_1(a,2,icx)$$ Here, $\alpha,c>0$, $\beta\in\mathbb{R}$, $a\in\mathbb{C}$ and $_1F_1(\dotsi)$ is the Confluent hypergeometric function of the first kind [see, http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html]. Can this integral be evaluated in closed-form?