hello please answer my question. 1)is product of two martingales respect of their natural filtration, martingale? 2)is product of two martingale respect to common filtration, martingale? thank for your helps
2026-02-22 23:11:39.1771801899
is product of two martingales a martingale with common filtration?
1k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MARTINGALES
- CLT for Martingales
- Find Expected Value of Martingale $X_n$
- Need to find Conditions to get a (sub-)martingale
- Martingale conditional expectation
- Sum of two martingales
- Discrete martingale stopping time
- Optional Stopping Theorem for martingales
- Prove that the following is a martingale
- Are all martingales uniformly integrable
- Cross Variation of stochatic integrals
Related Questions in LOCAL-MARTINGALES
- How can a martingale be a density process?
- Show that $(S_t - M_t) \phi(S_t) = \Phi(S_t) - \int_{0}^{t} \phi(S_s) dM_s$
- Local Martingales in J. Michael Steele (Stochastic Calculus and Financial Applications )
- Martingale property of a stochastic integral w.r.t. a local martingale.
- Associativity of an integral against a function with finite variation
- find 2 local martingales M(t) and N(t) such that M(T)=N(T),but for t<T,M(t) $\ne$ N(t)
- is product of two martingales a martingale with common filtration?
- A non-negative local submartingale of the class DL is a submartingale
- Is the space of continuous local martingales equipped with the topology of uniform convergence on compact sets complete?
- Proving martingale property of $N_t = Z(M_{t\wedge s} - M_{t \wedge r})$ for martingale $M$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Almost never. An example: let $\{W_n\}$ be i.i.d with mean 0 , finite variance and $X_n=Y_n=W_1+W_2+...+W_n$. If $\{X_nY_n\}$ is a martingale the $E(X_nY_n)$ is independent of $n$. But $E(X_nY_n)=nEW_1^{2}$.