Is there a topos $\mathcal E$ such that, for any sober topological space $X$, the geometric morphisms $$\mathrm{Sh}\left(\mathcal O\left(X\right)\right)\rightarrow \mathcal E$$ are in correspondance with the schemes whose underlying topological space is $X$?
2026-02-22 19:29:03.1771788543
Is there a classifying topos for schemes?
316 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in SCHEMES
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- Do torsion-free $\mathcal{O}_X$-modules on curves have dimension one?
- $\mathbb{C}[x,y]$ is the sections of Spec $\mathbb{C}[x,y]$ minus the origin?
- Is every open affine subscheme of an algebraic $k-$variety an affine $k-$variety?
- Scheme Theoretic Image (Hartshorne Ex.II.3.11.d)
- Is this a closed embedding of schemes?
- Adjunction isomorphism in algebraic geometry
- Closed connected subset of $\mathbb{P}_k^1$
- Why can't closed subschemes be defined in an easier way?
- Projection from algebraic variety is surjective
Related Questions in TOPOS-THEORY
- Continuous functor for a Grothendieck topology
- Show that a certain functor preserves colimits and finite limits by verifying it on the stalks of sheaves
- Prove that a "tensor product" principal $G$-bundle coincides with a "pullback" via topos morphism
- (From Awodey) Find the subobject classifier for $\sf Sets^{P}$ for a poset $\sf P$
- Cardinal collapse and (higher) toposes
- Geometric interpretation of Lawvere-Tierney topology
- Can 2 different coverages *on the same category* yield the same sheaf topos?
- Is there a classifying topos for schemes?
- Classifying topos of a topological group
- Lattice subobjects of the power object in a topos
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Interesting question! No, such a topos $\mathcal{E}$ cannot exist.
Fix your favorite topological space $X$ which cannot be made into a scheme, that is, such that for no local sheaf of rings $\mathcal{O}_X$, the pair $(X,\mathcal{O}_X)$ is a scheme. For instance the reals with their Euclidean topology will do (the only open subspace of $\mathbb{R}^1$ which is a spectral space is the empty one).
Then there shouldn't be any geometric morphism $\mathrm{Sh}(X) \to \mathcal{E}$. However, we can easily construct such as a morphism, for instance as the composition of the unique morphism $\mathrm{Sh}(X) \to \mathrm{Sh}(\mathrm{pt})$ and the morphism $\mathrm{Sh}(\mathrm{pt}) \to \mathcal{E}$ corresponding to any of the many scheme structures on $\mathrm{pt}$.