Let $k[x_1,...,x_n]$ be a polynomial ring over a field $k$ and let $R$ be an equivalence relation on $\{1,...,n\}$. Is there a name for the ideal $(x_i-x_j \mid iRj)$?
2026-02-22 22:52:28.1771800748
Is there a name for this sort of ideal?
55 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in COMMUTATIVE-ALGEBRA
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Extending a linear action to monomials of higher degree
- Tensor product commutes with infinite products
- Example of simple modules
- Describe explicitly a minimal free resolution
- Ideals of $k[[x,y]]$
- $k[[x,y]]/I$ is a Gorenstein ring implies that $I$ is generated by 2 elements
- There is no ring map $\mathbb C[x] \to \mathbb C[x]$ swapping the prime ideals $(x-1)$ and $(x)$
- Inclusions in tensor products
- Principal Ideal Ring which is not Integral
Related Questions in IDEALS
- Prime Ideals in Subrings
- Ideals of $k[[x,y]]$
- Product of Ideals?
- Let $L$ be a left ideal of a ring R such that $ RL \neq 0$. Then $L$ is simple as an R-module if and only if $L$ is a minimal left ideal?
- Show $\varphi:R/I\to R/J$ is a well-defined ring homomorphism
- A question on the group algebra
- The radical of the algebra $ A = T_n(F)$ is $N$, the set of all strictly upper triangular matrices.
- Prove that $\langle 2,1+\sqrt{-5} \rangle ^ 2 \subseteq \langle 2 \rangle$
- $\mathbb{Z}[i] / (2+3i)$ has 13 elements
- Ideal $I_p$ in $\mathbb{F}_l[x]/(x^p -1)$ where $\frac{\epsilon p}{2} \leq \dim(I_p) < \epsilon p$
Related Questions in POLYNOMIAL-RINGS
- Prove that $R[x]$ is an integral domain if and only if $R$ is an integral domain.
- For what $k$ is $g_k\circ f_k$ invertible?
- Prove that the field $k(x)$ of rational functions over $k$ in the variable $x$ is not a finitely generated $k$-algebra.
- The 1-affine space is not isomorphic to the 1-affine space minus one point
- What are the coefficients of $x^2+2\in(\mathbb{Z}/\mathbb{Z}4)[x]?$
- Prove that $\mathbb{Z}_{5}[x]/(x^2+1)$ is isomorphic to $\mathbb{Z}_{5} \times \mathbb{Z}_{5}$.
- Polynomial ring over finite field - inverting a polynomial non-prime
- Descending Chain Condition
- notation in congruence relation
- Is the cardinality of the polynomial quotient ring $\mathbb{Z}_n [x] /f(x)$ always finite?
Related Questions in BINOMIAL-IDEALS
- The reduced basis for a binomial ideal is formed by binomials
- Dimension of certain type of finitely generated $k$-algebra
- Showing $\sum_{k=0}^{n} {n \choose k}\frac{{(-1)}^k}{n+k+1}$ is positive
- Homology of the Koszul Complex of a quotient ring: an explicit example.
- The saturation $J:(t_1\cdots t_m)^\infty$, where all generators of $J$ have degree one in the $t_i$'s
- Prove that every ideal of $\Bbb{Z}$ has the form $m\Bbb{Z}=\{mk, k\in \Bbb{Z}\}$
- References for edge ideals (graph theory & commutative algebra)
- Is there a name for this sort of ideal?
- Ideal generated by $2 \times 2$ minors is prime
- Tensor product of two free resolutions yields a free resolution (closed binomial edge ideals)
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I have seen different terminology being used in different texts and papers for the ideal generated by elements of the form $x_i-x_j$ for $iRj$. The most common one is the "ideal of relations". Some texts also use the term "equivalence ideal".
Which of these is used depends on the context in which the said ideal came up. "Ideal of relations" is generally used in the context of algebraic varieties, where there is a need to specify the relations induced by $R$. If you want to convey the idea that $(x_i-x_j|iRj)$ represents the equations that enforce equalities between variables, then it might be advisable to use the term "equivalence ideal" or the "ideal of equalities".