While I was doing my Physics problems, I setup a equation contains $y''$ and $y^{-2}$. Specifically like this: $$my''=\frac{kQq}{(a-y)^2}-\frac{kQq}{(a+y)^2}$$ where $m,k,Q,q,a$ are constant. I did Laplace, but there's no formula for Laplace $y^{-2}$.
Is there any other way to solve this?
$$my''=\frac{kQq}{(a-x)^2}-\frac{kQq}{(a+x)^2}$$ $$my'=\frac{-kQq}{(a-x)}+\frac{kQq}{(a+x)}+ c $$ $$my={-kQq}\,{\,log (a-x)}+{kQq}\,{\,log(a+x)}+ cx + d $$ $$my={kQq} \quad log\frac{\,(a+x)}{\,(a+x)}+ cx + d $$
EDIT:
after question corrected..
$$ A= m/kQq$$
$$Ay''=\frac{4ay}{(a^2-y^2)^2}$$