Laplace Question $f(t) = e^{-t} \sin(t)$

32.3k Views Asked by At

I need help with this Laplace question. $$f(t) = e^{-t} \sin(t) $$


Answer should be $\dfrac{1}{s^2 + 2s + 2}$


What I'm currently doing is as follows:

$u = \sin(t)\qquad$ $dv = e^{-(s+1)t}dt$

$du = \cos(t)dt\qquad$ $v = \dfrac{e^{-(s+1)t}}{-(s+1)}$

$\dfrac{-\sin(t) e^{-(s+1)t}}{-(s+1)} - \int\dfrac{ e^{-(s+1)t}\cos(t)}{ -(s+1)} dt$

But even if I solved the integral, I wouldn't get this (which is what I should, see picture).

enter image description here

3

There are 3 best solutions below

6
On BEST ANSWER

You need not integrate by parts to evaluate this integral. In fact, one would need to integrate by parts twice. See the section following the highlighted SPOILER ALERT

So, I thought it would be instructive to present a "trick" that we can use to quickly evaluate the integral of interest and other similar integrals.

HERE IS A HINT:

$$\sin(t)=\text{Im}\left(e^{it}\right) \tag 1$$

SPOILER ALERT: Scroll over the highlighted area to reveal the solution

Using $(1)$, we have$$\begin{align}\int_0^\infty e^{-t}\sin(t)e^{-st}\,dt&=\text{Im}\left(\int_0^\infty e^{(-1-s+i)t}\,dt\right)\\\\&=\text{Im}\left(\frac{1}{-(1+s)+i)}\right)\\\\&=\text{Im}\left(\frac{-(s+1)-i}{(s+1)^2+1}\,dt\right)\\\\&=\frac{1}{s^2+2s+2}\end{align}$$as was to be shown! Quick, painless, and less prone to careless errors.


The last result in the OP was

$$\int_0^\infty e^{-t}\sin(t)e^{-st}\,dt=\left.\left(\frac{-\sin(t) e^{-(s+1)t}}{-(s+1)}\right)\right|_0^\infty - \int_0^{\infty}\dfrac{ e^{-(s+1)t}\cos(t)}{ -(s+1)} dt$$

Continuing we have

$$\begin{align} \int_0^\infty e^{-t}\sin(t)e^{-st}\,dt&=\frac{1}{s+1} \int_0^{\infty} e^{-(s+1)t}\cos(t)\,dt \tag 2 \end{align}$$

We integrate by parts $(2)$ with $u=\cos(t)$ and $v=-\frac{e^{-(s+1)t}}{s+1}$. Then, we obtain

$$\begin{align} \int_0^\infty e^{-t}\sin(t)e^{-st}\,dt&=\frac{1}{s+1}\left.\left(-\frac{\cos(t)e^{-(s+1)t}}{s+1}\right)\right|_0^\infty -\frac{1}{(s+1)^2}\int_0^\infty \sin(t)e^{-(s+1)t}\,dt\\\\ &=\frac{1}{(s+1)^2}-\frac{1}{(s+1)^2}\int_0^\infty \sin(t)e^{-(s+1)t}\,dt\\\\ ((s+1)^2+1)\int_0^\infty e^{-t}\sin(t)e^{-st}\,dt&=1\\\\ \int_0^\infty e^{-t}\sin(t)e^{-st}\,dt&=\frac{1}{s^2+2s+2} \end{align}$$

as expected!

0
On

Calculate Laplace transform for $f(t)$ and $e^{-t}\cos(t)$ then you'll get a equation system where the unknowns will be the integrals $$\int\dfrac{ e^{-(s+1)t}\cos(t)}{ -(s+1)} dt \text{ and } \int\dfrac{ e^{-(s+1)t}\sin(t)}{ -(s+1)} dt $$ with this you can conclude.

0
On

Here's the 'direct' proof: $f(t)=e^{-t}\sin t.$ \begin{eqnarray*}\mathcal{L}\{f(t)\}&=&\int_{0}^{+\infty}e^{-(s+1)t}\sin t\,dt~=~\lim_{\ell\to+\infty}\int_{0}^{\ell}e^{-(s+1)t}\sin t\,dt\\ &=&-\frac{1}{s+1}\lim_{\ell\to+\infty}\left[e^{-(s+1)t}\sin t\Big|_{0}^{\ell}-\int_{0}^{\ell}e^{-(s+1)t}\cos t\,dt\right]\\ &=&\frac{1}{s+1}\lim_{\ell\to+\infty}\int_{0}^{\ell}e^{-(s+1)t}\cos t\,dt, \end{eqnarray*}
since $$\lim_{\ell\to+\infty}e^{-(s+1)\ell}\sin\ell=0.$$ Integrating again by parts yields \begin{eqnarray*}\mathcal{L}\{f(t)\}&=&-\frac{1}{(s+1)^2}\lim_{\ell\to+\infty}\left[e^{-(s+1)t}\cos t\Big|_{0}^{\ell}+\int_{0}^{\ell}e^{-(s+1)t}\sin t\,dt\right]\\ &=&\frac{1}{(s+1)^2}\left[1-\lim_{\ell\to+\infty}\int_{0}^{\ell}e^{-(s+1)t}\sin t\,dt\right]\\ &=&\frac{1}{(s+1)^2}(1-\mathcal{L}\{f(t)\}) \end{eqnarray*}
and finally solving by $\mathcal{L}\{f(t)\}$, $$\boxed{\mathcal{L}\{f(t)\}=\frac{1}{(s+1)^2+1}=\frac{1}{s^2+2s+2}}~.$$