Determine the determinant of a companion matrix

494 Views Asked by At

Calculate for $ n \geq 2 $ and $ x, a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{R} $ the determinant of the following matrix:

$$\begin{bmatrix} {x} & {0} & {\cdots} & {\cdots} & {\cdots} & {0} & {a_{0}} \\ {-1} & {x} & {0} & {\cdots} & {\cdots} & {0} & {a_{1}} \\ {0} & {-1} & {x} & {0} & {\cdots} & {0} & {a_{2}} \\ {\vdots} & {\ddots} & {\ddots} & {\ddots} & {\ddots} & {\vdots} & {\vdots} \\ {0} & {\cdots} & {0} & {-1} & {x} & {0} & {a_{n-3}} \\ {0} & {\cdots} & {\cdots} & {0} & {-1} & {x} & {a_{n-2}} \\ {0} & {\cdots} & {\cdots} & {\cdots} & {0} & {-1} & {a_{n-1}+x} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

My solution approach so far:

By using laplace extension $\bigl(\operatorname{det}(A)=\sum \limits_{i=1}^{n}(-1)^{i+1} a_{i 1} \operatorname{det}\left(A_{i 1}\right)\bigr)$:

$$\operatorname{det}(A)=\sum \limits_{i=1}^{n}(-1)^{i+1} x \operatorname{det}\begin{bmatrix} {x} & {0} & {\cdots} & {\cdots} & {0} & {a_{1}} \\ {-1} & {x} & {0} & {\cdots} & {0} & {a_{2}} \\ {\ddots} & {\ddots} & {\ddots} & {\ddots} & {\vdots} & {\vdots} \\ {\cdots} & {0} & {-1} & {x} & {0} & {a_{n-3}} \\{\cdots} & {\cdots} & {0} & {-1} & {x} & {a_{n-2}} \\{\cdots} & {\cdots} & {\cdots} & {0} & {-1} & {a_{n-1}+x} \end{bmatrix}$$

How do I continue? Do I just use laplace extension again and again, or what is the most elegant way to solve this task? Thanks in advance!

1

There are 1 best solutions below

0
On BEST ANSWER

An easy way is to expand along the last column. This gives the polynomial directly since you have $a_i$ coefficients by the determinant of an $(n-1)\times (n-1)$ direct sum of triangular matrices.