$$
D =
\begin{vmatrix}
1 & 1 & 1 & \dots & 1 & 1 \\
2 & 1 & 1 & \dots & 1 & 0 \\
3 & 1 & 1 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots &\ddots & \vdots & \vdots \\
n-1 & 1 & 0 & \dots & 0 & 0 \\
n & 0 & 0 & \dots & 0 & 0 \\
\end{vmatrix}
=n*1*(-1)^\frac{n(n-1)}{2}
$$
I don't quite understand the solution of this determinant. I do understand that if we use Laplace expansion along the last row we get
$$
D = n*
\begin{vmatrix}
1 & 1 & 1 & \dots & 1 & 1 \\
1 & 1 & 1 & \dots & 1 & 0 \\
1 & 1 & 1 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots &\ddots & \vdots & \vdots \\
1 & 1 & 0 & \dots & 0 & 0 \\
1 & 0 & 0 & \dots & 0 & 0 \\
\end{vmatrix}
$$
But how does the remaining determinant euqal: $1*(-1)^\frac{n(n-1)}{2}$?
Edit:
$$
\begin{vmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{vmatrix}
=(-1)^{4}
\begin{vmatrix}
0 & 1 \\
1 & 0 \\
\end{vmatrix}
=(-1)^{4+3+2}
$$
I thought it should go: $(-1)^{3+2+1}$ or is the power actually the sum of row and column coordinates?
To compute
$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & 1 & \dots & 1 & 0 \\ 1 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots &\ddots & \vdots & \vdots \\ 1 & 1 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ \end{vmatrix}$$
You can proceed like that: If we swap the $k$-th row with the $n-k$-th row of the matrix for $k=1,2,\ldots$ then, at some point, we will get a lower triangular matrix with only $1$ on its main diagonal (so its determinant is $1$). Now, each swap corresponds to an elementary operation of the Gauss-Jordan method and thus changes the sign of the determinant (i.e. multiplies it by $-1$). So count the number of swaps to get the result.