Laplacian - Gradient equivalence

62 Views Asked by At

Supossedly the laplacian operator as a matrix has the following equivalence:

\begin{equation} L = G^{T}G \end{equation}

But Im not being able to demonstrate this. The most similar thing I did is:

\begin{equation} L = Gx^{T}Gx+Gy^{T}Gy \end{equation}

Where $L, Gx, Gy$ are as follows. All of them for a 4x4 matrix \begin{equation} L = \begin{smallmatrix} 2.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\-1.0 & 3.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & -1.0 & 3.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & -1.0 & 2.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\-1.0 & 0.0 & 0.0 & 0.0 & 3.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 4.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 4.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 3.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 3.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 4.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 4.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 3.0 & 0.0 & 0.0 & 0.0 & -1.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 2.0 & -1.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 3.0 & -1.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 3.0 & -1.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 2.0 \end{smallmatrix} \end{equation}

\begin{equation} Gx = \begin{smallmatrix} -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.0 \end{smallmatrix} \end{equation}

\begin{equation} Gy = \begin{smallmatrix} 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 \\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 \end{smallmatrix} \end{equation}

Could you help me to figured out how matrix G should be to fulfill the first equivalence?

Thanks

1

There are 1 best solutions below

0
On

Find the SVD of $$L=UDV^T$$ Since $L$ is symmetric, the decomposition reduces to $$L=VDV^T$$ From this you can obtain the desired matrix as $$G=D^{1/2}\,V^T$$ Normally, you'd use a Cholesky Decomposition to find $G$, but in this case $L$ is rank-deficient.