Let S = {${a_1, a_2, a_3, ... a_n}$} be a finite nonempty set of real numbers a. prove bounded b. show lub and glb are elements of S

596 Views Asked by At

Question:

Let S = {${a_1, a_2, a_3, ... a_n}$} be a finite nonempty set of real numbers.

(a) show that S is bounded

(b) Show that lub S and glb S are elements of S


for (a) I see an attempt to answer it was made here: Prove that a finite non empty set of real numbers in bounded .

But the logic is escaping me. Why is M necessarily larger than $a_i$ in the posted example?

(b) I don't know where to begin for this one... I know that if S is bounded then there must be a lub and glb. But why would they necessarily be elements of S? I didn't think a lub or glb had to be an element in a set? Am I misunderstanding?

2

There are 2 best solutions below

0
On BEST ANSWER

For part (a), note that for each $i$, $a_i\leq|a_i|$. Also, adding more positive numbers to $|a_i|$ simply makes the number greater. So we get that for each $i$, $a_i\leq|a_i|\leq|a_1|+\cdots+|a_i|+\cdots+|a_n|$. Hence, the set is bounded.

For part (b), note that if a set contains its maximum, then the least upper bound of that set is its maximum. To prove this, let $S$ be a set bounded above that contains its maximum. Then we know it has a supremum $\sup S$, which satisfies the properties that $\sup S$ is an upper bound for $S$, and that any upper bound of $S$ is greater than or equal to $\sup S$. Now note that the maximum of the set $S$ is an upper bound for $S$, since any element of $S$ is less than or equal to the maximum of the set $S$. What can you conclude?

0
On

Let $$M=max \{|a_1|,|a_2|,...,|a_n|\}$$

We have $$-M\le a_i\le M, i =1,2,...,n$$

That is $S$ is bounded.

The minimum element of $S$ is a lower bound of $S$ and it is the greatest lower bound because if $x$ is greater than the minimum then $x$ is not a lower bound due to the fact that an element of the set namely the minimum is less than that.

Similar argument works for the maximum being the least upper bound.