Let $(X_1, \tau_1)$ be a first countable space, $(X_2,\tau_2)$ topological space, function $f\ :\ (X_1, \tau_1) \rightarrow (X_2,\tau_2)$ , V be any open set in $X_2$ prove that $f^{-1}(V)$ contains open set that is not an empty set. i'm stack in proving this.
2026-02-22 23:12:31.1771801951
Let $(X,\tau_x)$ first counable space , $(Y,\tau_y)$, prove that pra image f of an open set in Y, contains open set
21 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in FIRST-COUNTABLE
- Prove that $\prod X_\alpha$ is first (second)-countable if and only if $X_\alpha$ is first (second)-countable, $\forall \alpha\in I.$
- If X satisfies the first or second countability axiom then $F(X)$ satisfies the same condition.
- Check properties of the topology $\{U \subseteq \mathbb{R} \mid \forall x \in U: \exists \epsilon > 0: [x, x + \epsilon[ \subseteq U\}$
- Let $(X,\tau_x)$ first counable space , $(Y,\tau_y)$, prove that pra image f of an open set in Y, contains open set
- If a space is first countable, does that imply it is locally compact?
- The continuous image of a First Countable Space need not be First Countable (Willard 16.B.1)
- Is the topology of weak convergence of probability measures first-countable?
- A first countable hemicompact space is locally compact
- Neighborhood basis in the discrete metric space and first countability
- What is the proof that first countable is sufficient to say that sequentially closed implies closed
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It is not true.
In the first place $V$ can be empty, and in that case also $f^{-1}(V)$ is empty so that it cannot contain a non-empty set.
If - in order to avoid that situation - it is demanded that $V$ is not empty then still it is not true.
Let the first space be $\mathbb R$ equipped with usual topology (i.e. order topology).
Let the second space be $\mathbb R$ equipped with discrete topology.
Let $f$ be the identity function on $\mathbb R$.
Then the first space is first countable, $V=\{0\}$ is open in the second space and is not empty, but $f^{-1}(V)=\{0\}$ does not contain a non-empty set that is open in the first space.